Exam Logical Verification

April 7, 2008

There are six (6) exercises.
Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order propositional logic
(propl) and simply typed A-calculus (A—).

a. Give a proof in propl showing that the following formula is a tautology:

(A—-B)y-C—-D)-C—-B—D
(5 points)

b. Give the type-derivation in A— corresponding to the proof in la.
(5 points)

c. Complete the following simply typed A-terms:

Az 2. Ay Azt zyx
Az Ay 7 Az (Wt y) 2
Az Ay 2.z 2.z (zyy)

(5 points)

Exercise 2. This exercise is concerned with first-order predicate logic (pred1).

a. Give the two detour elimination rules for first-order predicate logic.
(5 points)

b. Give a proof of (Vz. P(z)) — P(a) with a detour for V.
(5 points)

¢. Give the A\P-term corresponding to the formula in 2b.
(5 points)

d. Give a closed inhabitant in AP of the answer to 2c that contains a (-redex.
(5 points)



Exercise 3. This exercise is concerned with second-order propositional logic
(prop2) and polymorphic A-calculus (A2).

a. Give a proof in prop2 showing that the following formula is a tautology:
Va.((Vb.a — b—a) —a) —a

(5 points)

b. Give the A2-type corresponding to the formula of 3a.
(5 points)

¢. Give a closed inhabitant in A2 of the answer to 3b.

(5 points)

Exercise 4 This exercise is concerned with dependent types.

a. Consider the definition of dependent lists:

Inductive natlist_dep : nat -> Set :=
| nil_dep : natlist_dep O
| cons_dep : forall n : nat,
nat -> natlist_dep n -> natlist_dep (S n).

Use this definition to give the term corresponding to the dependent list
consisting of the three elements 1, 2, 3.

(5 points)
b. The function append : natlist -> natlist -> natlist takes as input
two (non-dependent) lists of natural numbers and gives as output their

concatenation. Give the type of the corresponding function append_dep
on dependent lists of natural numbers.

(5 points)

Exercise 5. This exercise is concerned with encodings.

a. Give an impredicative definition of false in prop2, call it new_false.
Show in prop2 the following: Ve. (new_false — c).
(Unfold the definition of new_false in your proof.)
(6 points)
b. The impredicative definition of or in prop2 is as follows:
new_orAB =Ve.((A—¢c)— (B—c)—c).
Show A — (new_or A B) in prop2.
(Unfold the definition of new_or in your proof.)
(5 points)



Exercise 6. This exercise is concerned with Coq.

a. Give the definition of an inductive data-type natpair of pairs of natural
numbers (with nat the type of natural numbers).
(5 points)

b. Give the induction principle for natpair.
(5 points)

¢. Give the definition of a function that takes as input a natpair and gives
as output the sum of the two elements.
(You can use the built-in addition of natural numbers in Coq.)

(5 points)
d. Consider the following inductive definition of the predicate le:
Inductive le (n:nat) : nat -> Prop :=
| len : n<=n

| 1e.8 : forall m:nat, n <= m > n <= S m

Give if possible an inhabitant of the following:

forall n, n<=n

0<=0
0<=(80)
(5 points)

The final note is (the total amount of points plus 10) divided by 10.






