Exam Logical Verification

April 7, 2008

There are six (6) exercises.

Answers may be given in Dutch or English. Good luck!

Exercise 1. This exercise is concerned with first-order propositional logic (prop1) and simply typed λ -calculus ($\lambda \rightarrow$).

a. Give a proof in prop1 showing that the following formula is a tautology:

$$((A \rightarrow B) \rightarrow C \rightarrow D) \rightarrow C \rightarrow B \rightarrow D$$

(5 points)

- b. Give the type-derivation in $\lambda \rightarrow$ corresponding to the proof in 1a. (5 points)
- c. Complete the following simply typed λ -terms:

$$\lambda x :?. \lambda y :?. \lambda z :?. z y x$$

 $\lambda x :?. \lambda y :?. \lambda z ;?. (\lambda u :?. x y) z$
 $\lambda x :?. \lambda y :?. \lambda z :?. z (x y y)$

(5 points)

Exercise 2. This exercise is concerned with first-order predicate logic (pred1).

- a. Give the two detour elimination rules for first-order predicate logic.
 (5 points)
- b. Give a proof of $(\forall x. P(x)) \rightarrow P(a)$ with a detour for \forall . (5 points)
- c. Give the λP -term corresponding to the formula in 2b. (5 points)
- d. Give a closed inhabitant in λP of the answer to 2c that contains a β -redex. (5 points)

Exercise 3. This exercise is concerned with second-order propositional logic (prop2) and polymorphic λ -calculus (λ 2).

a. Give a proof in prop2 showing that the following formula is a tautology:

$$\forall a. \, ((\forall b. \, a \rightarrow b \rightarrow a) \rightarrow a) \rightarrow a$$

(5 points)

- b. Give the $\lambda 2$ -type corresponding to the formula of 3a. (5 points)
- c. Give a closed inhabitant in $\lambda 2$ of the answer to 3b. (5 points)

Exercise 4 This exercise is concerned with dependent types.

a. Consider the definition of dependent lists:

Use this definition to give the term corresponding to the dependent list consisting of the three elements 1, 2, 3.

(5 points)

b. The function append: natlist -> natlist -> natlist takes as input two (non-dependent) lists of natural numbers and gives as output their concatenation. Give the type of the corresponding function append_dep on dependent lists of natural numbers.

(5 points)

Exercise 5. This exercise is concerned with encodings.

a. Give an impredicative definition of false in prop2, call it new_false. Show in prop2 the following: $\forall c. (\text{new_false} \rightarrow c)$.

(Unfold the definition of new_false in your proof.)

(5 points)

b. The impredicative definition of or in prop2 is as follows: new_or $AB = \forall c. ((A \rightarrow c) \rightarrow (B \rightarrow c) \rightarrow c).$

Show $A \rightarrow (\text{new_or } A B)$ in prop2.

(Unfold the definition of new_or in your proof.)

(5 points)

Exercise 6. This exercise is concerned with Coq.

a. Give the definition of an inductive data-type natpair of pairs of natural numbers (with nat the type of natural numbers).

(5 points)

b. Give the induction principle for natpair.

(5 points)

c. Give the definition of a function that takes as input a natpair and gives as output the sum of the two elements.

(You can use the built-in addition of natural numbers in Coq.) (5 points)

d. Consider the following inductive definition of the predicate 1e:

```
Inductive le (n:nat) : nat -> Prop :=
    | le_n : n <= n
    | le_S : forall m:nat, n <= m -> n <= S m</pre>
```

Give if possible an inhabitant of the following:

```
forall n, n <= n
0 <= 0
0 <= (S 0)
(5 points)
```

