This exam has 2 pages and 8 exercises.

The result will be computed as (total number of points plus 10) divided by 10.

1. Island of liars and truth speakers (12 points)

On the island of liars and truth speakers, everybody is either a liar (who always lies) or a truth speaker (who always speaks the truth). You meet three islanders A, B and C.

A says: "B or C is a truth speaker, but not both."

B says: "A is a truth speaker."

C says: "B is a truth speaker."

You need to determine, by means of a truth table, which of these three islanders speak the truth and which ones lie.

2. CNF (8 points)

Build a formula in CNF that corresponds to the following truth table (using the method explained in the third logic lecture).

p	q	r	?
T	Т	Т	F
T	Т	F	Т
Т	F	Т	Т
T	F	F	F
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	F

3. Logic circuit (10 points)

Give a logic circuit, using only AND, OR and NOT gates, that represents $x \to y$.

4. Predicate logic (6+9 points)

Consider the two formulas $\exists x C(x)$ and C(y).

- a) Which of the two formulas semantically entails the other? Motivate your answer.
- b) Give a model to show that the two formulas are not semantically equivalent.

5. Sets (9 points)

Consider the following set-theoretic equality

$$(A \backslash B) \cup ((B \cup C') \backslash B) = ((A' \cap C) \cup B)'.$$

Prove it using the rules of the algebra of sets.

6. Relations (3+5+4 points)

In the set $V = \{1, 2, 3, 4\}$ consider the relation R given by the set of pairs

$$\{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle\}.$$

- a) Show that R is not an equivalence relation.
- b) Show that R is an ordering relation which is not total.
- c) Determine the minimal and maximal elements of R. Does there exist a largest element? Does there exist a smallest element?

7. Functions (6+6 points)

We are given the functions $root: \mathbb{R} \to \mathbb{R}, \ exp: \mathbb{R} \to \mathbb{R}, \ and \ add: \mathbb{R} \to \mathbb{R}, \ defined by$

$$root(x) = \sqrt{x}$$
, $exp(x) = e^x$, and $add(x) = x + 1$.

- a) For each of these functions check whether it is total and whether it is surjective.
- b) Give a description (an expression for f(x)) for the function $f := root \circ add^{-1} \circ exp$ and specify the domain of definition D_f and the range R_f .

8. Induction and recursion (3+9 points)

Consider the sequence $(t_n)_{n\in\mathbb{N}}$ of numbers defined recursively by

$$t_1 := 0,$$
 $t_{n+1} := t_n + \frac{1}{n(n+1)} + 1.$

We claim that the following statement is true for all natural numbers n:

$$t_n = n - \frac{1}{n}.$$

- a) Verify by explicit computation that the claim is true for n = 1, n = 2 and n = 3.
- b) Prove by mathematical induction that the statement holds true for all natural numbers n.

2