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Chapter 1

Eigenvalues and eigenvectors

1.1 Eigenvalues and eigenvectors

Definition 1 An eigenvector of an n ⇥ n matrix A is a nonzero vector ~x such that A~x = �~x
for some scalar �. � is called a eigenvalue of A if there is a nonotrivial solution ~x of A~x = �~x.

An eigenvalue may be zero, but a eigenvector must always be nonzero. Every eigenvalue has at
least one corresponding eigenvector. If 0 is an eigenvalue of A, then A is not invertible.

It is easy to check whether a certain vector is an eigenvector. For example: check if ~v =


3
1

�
is

an eigenvector of A =


�2 12
�1 5

�
.

A~v =


�2 12
�1 5

� 
3
1

�
=


6
2

�
= 2~v (1.1)

And therefore an eigenvector.

It is also easy to check if a given � is an eigenvalue. For example: check if 1 is an eigen-

value of A =


�2 12
�1 5

�
. Since A~x = �~x must hold for it to be an eigenvalue. It must also be

true that
(A� �I)~x = ~0 (1.2)

In our example that gives us

A� 1I =


�2 12
�1 5

�
�

1 0
0 1

�
=


�3 12
�1 4

�
(1.3)

These columns are linearly dependent, and therefore (A � �I)~x = ~0 has a nontrivial solution
and thus is it in eigenvalue.
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To find the corresponding eigenvector row reduce to get


�3 12
�1 4

�
⇠


1 �4
0 0

�
(1.4)

And thus all vectors of the form x2


4
1

�
with x2 6= 0 are eigenvectors.

The subspace of Rn that contains all the eigenvectors corresponding to a certain eigenvalue
is called the eigenspace corresponding to �.

When given a matrix finding the eigenvalues is often not easy. In one case however it is.

Theorem 1 The eigenvalues of a triangular matrix are the entires on its main diagonal.

Theorem 2 If ~v1, . . . , ~vr are eigenvectors that correspond to distinct eigenvalues �1, . . . ,�r,
then ~v1, . . . , ~vr are linearly independent.

1.1.1 Exercises

Exercise 1

Is � = �2 an eigenvalue of A =


7 3
3 �1

�
?

Exercise 2

Is � = 3 an eigenvalue of A =

2

4
1 2 2
3 �2 1
0 1 1

3

5? If so, find one corresponding eigenvector.

Exercise 3

Is

2

4
1
�2
1

3

5 an eigenvector of A =

2

4
3 6 7
3 3 7
5 6 5

3

5? If so, find the eigenvalue.

Exercise 4

Find a basis for the eigenspace by � = �2 and A =

2

4
1 0 �1
1 �3 0
4 �13 1

3

5.
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1.2 Characteristic equation

1.2.1 Finding eigenvalues

To have be an eigenvalue the equation (A� �I)~x = ~0 must have a nontrivial solution. Which is
the same as saying det(A� �I) = 0. This is called the characteristic equation of A. This gives
us a polynomial in � and by solving that we can find the eigenvalues.

For example: A =


�2 12
�1 5

�
. A� �I =


�2� � 12
�1 5� �

�
.

det A = (�2� �)(5� �) + 12 = 0 (1.5)

�2 � 3�+ 2 = 0

(�� 1)(�� 2) = 0

�1 = 1 and �2 = 2

The number of times a certain � occurs in the characteristic equation is called the algebraic
multiplicity of �.

1.2.2 Exercises

Exercise 5

Use the characteristic polynomial to find the eigenvalues. A =


3 �6
1 �4

�
.

Exercise 6

Use cofactor expansion to find the eigenvalues. A =

2

4
�1 0 1
�3 4 1
0 0 2

3

5.
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1.3 Diagonalization

1.3.1 Similarity

Two matrices, A and B, are similar if there exists a invertible matrix P , such that A = PBP�1.

Theorem 3 If n ⇥ n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues.

But be warned. If two matrices have the same eigenvalues, they are not necessarilly similar.

1.3.2 Diagonalization

The concept of similarity combined with a diagonal matrix is very usefull when calculating pow-
ers of matrices because Ak = PDP�1PDP�1 . . . PDP�1 = PD(P�1P )D(P�1 . . . P )DP�1 =
PDID . . . IDP�1 = PDkP . With D diagonal and therefore very easy to calculate.

A matrix is called diagonalizable if it can be written as A = PDP�1.

Theorem 4 An n ⇥ n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. In fact A = PDP�1, with D a diagonal matrix, if and only if the columns of P are
n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues
of A that correspond to the eigenvectors in P .

To diagonalize a certain matrix we have to follow these steps:

1. Find the eignevalues of A.

2. Find three linearly independent eigenvectors of A.

3. Construct P from the vectors in step 2.

4. Construc D from the corresponding eigenvalues.

For example: diagonalize A =

2

4
1 2 3
6 �1 0
�1 �2 �1

3

5 calculations with the characteristic equation gives

us the following eigenvalues and corresponding eigenvectors. �1 = 0 with ~v1 =

2

4
1
6

�13

3

5, �2 = �4

with ~v2 =

2

4
�1
2
1

3

5 and �3 = 3 with ~v3 =

2

4
2
3
�2

3

5 These eigenvectors are linearly independent thus

we can construct

P =
⇥
~v1 ~v2 ~v3

⇤
=

2

4
1 �1 2
6 2 3

�13 1 �2

3

5 (1.6)

And

D =

2

4
0 0 0
0 �4 0
0 0 3

3

5 (1.7)

Finally P�1 can also be calculated and then A is diagonalized.
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1.3.3 Determining whether a matrix is diagonizable

Theorem 5 An n⇥ n matrix with n distinct eigenvalues is diagonalizable.

Theorem 6 Let A be an n⇥ n matrix whose distinct eigenvalues are �1, . . . ,�p.

1. For 1  k  p, the dimension of the eigenspace for �k is less than or equal to the multi-
plicity of the eigenvalue �k.

2. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces
equals n, and this happens if and only if

(a) The characteristic polynomial factors completely into linear factors and

(b) The dimension of the eigenspace for each �k equals the multiplicity of �k.

3. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to �k for each
k, then the total collection of vectors in the sets B1, . . . , Bp forms an eigenvector basis for
Rn.

1.3.4 Exercises

Exercise 7

Diagonalize A =


�7 2
13 4

�
.

Exercise 8

Diagonalize A =

2

4
0 �4 �6
�1 0 �3
1 2 5

3

5 which eigenvalues are �1 = 2, �2 = 1.
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1.4 Linear transformations

Let V be an n-dimensional vectorspace and W an m-dimensional vectorspace, with bases B and
C respectively, and T a linear transformation from V to W . The matrix for T relative to the
bases B and C M is given by

M =
h
[T (~b1)]C [T (~b2)]C . . . [T (~bn)]C

i
(1.8)

If V = W then [T~x]B = [T ]B[~x]B for any ~x in V .
[T ]B is called the B-matrix for T.

Theorem 7 Suppose A = PDP�1, where D is diagonal n⇥ n. If B is the basis for Rn formed
from the columns of P , then D is the B-matrix for the transformation ~x 7! A~x.

1.4.1 Exercises

Exercise 9

Let C and B be bases for V and W respectively and let T : V ! W and T (~c1) = 3~b1 � ~b2,
T (~c2) = �~b1 � 2~b2. Find the matrix for T relative to C and B.

Exercise 10

Let E be the standard basis for R3, B a basis for a vector space V and T : R3 ! V , whith
the property T (x1, x2, x3) = (x3 � x2)~b1 � (x1 + x3)~b2 + (x1 � x2)~b3. Find the matrix for T
relative to E and B.

Exercise 11

Let T : P2 ! P4 be a transformation that maps a polynomial ~p(t) into the polynomial
~p(t) + t2~p(t). Find the matrix for T relative to the standard bases for P2 and P4.
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1.5 Complex eigenvalues and eigenvectors

It can be that when solving a characteristic polynomial you get a complex solution. This gives
us a complex eigenvalue and a complex eigenvector in Cn.

The complex conjugate of a n⇥ n matrix A with complex numbers, denoted as A, is formed by
taking the complex conjugate of every entrie.
Re ~x and Im ~x are the real and imaginary parts of a ~x in Cn respectivelly.

If � is a complex eigenvalue of A, then � is also a complex eigenvalue of A. The same holds for
~v and ~v.

If C =


a �b
b a

�
a and b both real and not both zero. Then the eigenvalues of C are � = a± bi.

Also let r be the modulus of �, that is r = |�|. Then

C = r


a/r �b/r
b/r a/r

�
=


r 0
0 r

� 
cos � �sin �
sin � cos �

�
(1.9)

With � the argument of �.

Theorem 8 Let A be a real 2⇥ 2 matrix with a complex eigenvalue � = a� bi (b not zero) and
an associated eigenvector ~v in C2. Then

A = PCP�1, where P =
⇥
Re ~v Im ~v

⇤
and C =


a �b
b a

�
(1.10)

1.5.1 Exercises

Exercise 12

Find the eigenvalues and eigenvectors of A =


2 �3
1 2

�
.

Exercise 13

A =

p
3 �1
1

p
3

�
list the eigenvalues, the angle and the rotation of ~x 7! A~x.

Exercise 14

A =


3 �1
2 4

�
. Find P and C such that A = PCP�1.
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1.6 Application to discrete dynamical systems

In this section we study ~xk+1 = A ~xk, with ~v1, . . . , ~vn linearly independent eigenvectors of A and
corresponding eigenvalues �1, . . . ,�n, ordered from biggest to smallest. The eigenvectors form a
basis for Rn, thus every ~x0 can be written as

~x0 = c1 ~v1 + . . .+ cn ~vn (1.11)

Then ~xk can be calculated by

~xk = c1(�1)
k ~v1 + . . .+ cn(�n)

k ~v1 (1.12)

When A is 2⇥ 2 the graph of ~x0, ~x1, . . . is called the trajectory. If both eigenvalues are smaller
then 1 the origin is a attractor. If they are both greater then 1, then the origin is a repeller. The
origin is a saddle point if one eigenvalue is greater then 1 an the other smaller then 1.

To find the lines along which the points go, we need a diagonal matrix. If A is already di-
agonal the points go along the axis. If A is not diagonal, diagonalize A and the points go along
the eigenvectors. The direction of greatest attraction or repultion is along the eigenvector cor-
responding to the smallest or greatest eigenvalue respectively.

If A has complex eigenvectors the points will spiral outwards if the absolute value of the eigen-
values is greater then 1 and will spiral towards the origin if the eigenvectors are smaller then
1.

1.6.1 Exercises

Exercise 15

Suppose A is 3⇥ 3, with eigenvalues 3, 4/5 and 3/5 and corresponding eigenvalues ~v1 =

2

4
1
0
�3

3

5,

~v2 =

2

4
2
1
�5

3

5 and ~v3 =

2

4
�3
�3
7

3

5. Let ~x0 =

2

4
�2
�5
3

3

5. Find the solution of the equation ~xk+1 = A ~xk for

the specified ~x0 and describe what happens when k ! 1.

Exercise 16

Is the origin a attractor, repeller or saddle point? Find the directions of greatest attraction

and/or repulsion. A =


0.3 0.4
�0.3 1.1

�
.
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Chapter 2

Least squares

2.1 Innerproduct

2.1.1 Innerproduct

The innerproduct in Rn of ~u and ~v, denoted by ~u · ~v, is defined as ~uT~v.

For example: ~u =

2

4
2
�5
6

3

5 and ~v =

2

4
�1
2
9

3

5, caluculate ~u · ~v =
⇥
2 �5 6

⇤
2

4
�1
2
9

3

5 = 2(�1) +

(�5)2 + 6 ⇤ 9 = 42.

Theorem 9 1. ~u · ~v = ~v · ~u.

2. (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.

3. (c~u) · ~v = c(~u · ~v) = ~u · (c~v).

4. ~u · ~u � 0 and ~u · ~u = 0 if and only if ~u = ~0.

2.1.2 Length

Definition 2 The length or norm of ~v is defined by k~vk =
p
~v · ~v.

By this definition k~vk2 = ~v · ~v. And kc~vk = |c|k~vk.

A vector with length 1 is called a unit vector. Multiplying a vector with 1 divided by its
lenght makes it a unit vector. This is called normalizing.

2.1.3 Distance

Definition 3 The distance between ~u and ~v is dist(~u,~v) = k~u� ~vk.

2.1.4 Orthogonality

Definition 4 Two vectors ~u and ~v are orthogonal if ~u · ~v = 0.

Theorem 10 Two vectors ~u and ~v are orthogonal if and only if k~u+ ~vk2 = k~uk2 + k~vk2.
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2.1.5 Orthogonal complement

The orthogonal complement of W subspace of Rn, W?, is the set of all vectors that are orthog-
onal to all vectors that span W .

Theorem 11 Let A be an n⇥m matrix, then: (Row A)? = Nul A and (Col A)? = Nul AT .

2.1.6 Angles

For vectors in R2 and R3 there exists a formula with the angle between these two vectors.
~u · ~v = k~ukk~vkcos�.

2.1.7 Exercises

Exercise 17

~u =

2

4
3
�1
2

3

5, ~v =

2

4
�2
3
6

3

5. What is ~u · ~v? What is distance between ~u and ~v? Normalize ~u and ~v.

Are ~u and ~v orthogonal to each other?

12



2.2 Orthogonal sets

2.2.1 Orthogonal sets

A orthogonal set in Rn is a set whose vectors are all orthogonal to each other. That is ~ui · ~uj = 0
if i 6= j.

Theorem 12 If S is a orthogonal set, then are its vectors linearly independent and thus a basis
for the subspace spanned by S.

2.2.2 Orthogonal basis

Definition 5 A orthogonal basis for a subspace W is a basis for W that is also a orthogonal
set.

As the next theorem shows is that a big advantage of orthogonal bases is that there is no need
to row reduce matrices to find the weights for a linear combination.

Theorem 13 The weights in the linear combination ~y = c1 ~u1+. . .+cp ~up are given by cj =
~y· ~uj

~uj · ~uj

For each ~y in W and { ~u1, . . . , ~up} orthogonal basis for W .

2.2.3 Orthonormal sets

A orthonormal set is a orthogonal set of unit vectors. And is a orthonormal basis for the
subspace spanned by the vectors in the set.

Theorem 14 An m⇥ n matrix U has orthonormal columns if and only if UTU = I.

Theorem 15 If U is a m⇥ n matrix with orthonormal columns then,

1. kU~xk = k~xk.

2. (U~x) · (U~y) = ~x · ~y.

3. (U~x) · (U~y) = 0 if and only if ~x · ~y = 0.

It is said that the mapping ~x 7! U~x preserves length and orthogonality.

If a square matrix has orthonormal columns then it is called a orthogonal matrix. For such
a matrix U holds that U�1 = UT .
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2.3 Orthogonal projections

2.3.1 In R2

Given a vector ~u in R2 consider the problem of decomposing a other vector ~y into the sum of
two vectors ~y = ~̂y + ~z with ~̂y, the the orthogonal projection ~y onto ~u, a multiple of ~u and ~z
orthogonal to ~u. If L is the line through ~u, then

~̂y = projL~y =
~y · ~u
~u · ~u~u (2.1)

2.3.2 In Rn

To extend the idea of orthogonal projections to Rn we need to realize that a vector in Rn with
a orthogonal basis, always can be written as the sum of a vector in the span of a number of
vectors from the basis and a vector in the span of the other vectors in that basis.

Theorem 16 Let W be subspace of Rn then every ~y in Rn can be written uniquely in the form
~y = ~̂y+ ~z. Where ~̂y is in W and ~z is in W?. If { ~u1, . . . , ~up} is any orthogonal basis of W then,

projW~y = ~̂y =
~y · ~u1
~u1 · ~u1

~u1 + . . .+
~y · ~up
~up · ~up

~up (2.2)

2.3.3 Properties

If ~y is in W , then projW~y = ~y.

Theorem 17 k~y � ~̂yk < k~y � ~vk , for all ~v in W distinct from ~̂y. Thus ~̂y is the point in W
closest to ~y.

Theorem 18 If { ~u1, . . . , ~up} is a orthonormal basis for W , then projW~y = (~y · ~u1) ~u1 + . . . +
(~y · ~up) ~up. If U =

⇥
~u1 . . . ~up

⇤
then projW~y = UUT~y.
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2.3.4 Exercises

Exercise 18

{ ~u1, ~u2, ~u3, ~u4} is a orthogonal basis. ~u1 =

2

664

1
2
1
1

3

775, ~u2 =

2

664

�2
1
�1
1

3

775, ~u3 =

2

664

1
1
�2
�1

3

775 and ~u4 =

2

664

�1
1
1
�2

3

775. Write

~x =

2

664

4
5
�3
3

3

775 as the sum of two vectors, one in Span{ ~u1, ~u2, ~u3} and one in Span{ ~u4}.

Exercise 19

Find the closest point to ~y =

2

664

3
�1
1
13

3

775 in the subspace W spanned by ~u1 =

2

664

1
�2
�1
2

3

775 and ~u2 =

2

664

�4
1
0
3

3

775. And calucate the distance between ~y and W .
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2.4 Making a orthogonal basis

2.4.1 Gram-Schmidt process

Given a certain basis for a supspace you can make a orthogonal basis for that subspace via the
following process.

Theorem 19 Given a basis { ~x1, . . . , ~xp} then if

~v1 = ~x1 (2.3)

~v2 = ~x2 �
~x2 · ~v1
~v1 · ~v1

~v1 (2.4)

~v3 = ~x3 �
~x3 · ~v1
~v1 · ~v1

~v1 �
~x3 · ~v2
~v2 · ~v2

~v2 (2.5)

~vp = ~xp �
~xp · ~v1
~v1 · ~v1

~v1 �
~xp · ~v2
~v2 · ~v2

~v2 � . . .� ~xp · ~vp
~vp · ~vp

~vp (2.6)

{~v1, . . . , ~vp} is a orthogonal basisi for Span { ~x1, . . . , ~xp}.

For example find a orthogonal basis for the column space of matrix A =

2

4
12 �51 4
6 167 �68
�4 24 �41

3

5.

~v1 = ~a1 =

2

4
12
6
�4

3

5, ~v2 = ~a2� ~a2· ~v1
~v1· ~v1 ~v1 =

2

4
�51
167
24

3

5� 294
196

2

4
12
6
�4

3

5 =

2

4
�69
158
30

3

5, ~v3 = ~a3� ~a3· ~v1
~v1· ~v1 ~v1�

~a3· ~v2
~v2· ~v2 ~v2 =

2

4
4

�68
�41

3

5� �196
196

2

4
12
6
�4

3

5� �12250
30625

2

4
�69
158
30

3

5 =

2

4
�58/5
6/5
�33

3

5.

By normalizing these vectors you can make a orthonormal basis.
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2.4.2 QR factorization

Theorem 20 A m ⇥ n matrix A can be written as A = QR with Q an m ⇥ n matrix whose
columns form a orthonormal basis for Col A and R n⇥n upper triangular invertible with positive
entries on its diagonal.

Q can be constructed by taking the columns that form a basis for Col A and applying the
Gram-Schmidt process to get a orthogonal basis and normalizing these vectors. Because Q is
orthonormal QTQ = I, thus if A = QR, then R = QTA.

For example: A =

2

4
12 �51 4
6 167 �68
�4 24 �41

3

5. From the example in subsection 2.4.1 we have orthogonal

vectors, normalizing these gives us ~q1 =

2

4
6/7
3/7
�2/7

3

5, ~q2 =

2

4
�69/175
158/175
6/35

3

5 and ~q3 =

2

4
�58/175
6/175
�33/35

3

5 plac-

ing these vectors in a matrix gives us Q =

2

4
6/7 �69/175 �58/175
3/7 158/175 6/175
�2/7 6/35 �33/35

3

5. Then R = QTA =

2

4
14 21 �14
0 175 �70
0 0 35

3

5.

2.4.3 Exercises

Exercise 20

Find an orthogonal basis for the subspace W spanned by ~x1 =

2

664

3
�1
2
�1

3

775 and ~x2 =

2

664

�5
9
�9
3

3

775.

Exercise 21

Find an orthogonal basis for the column space of A =

2

66664

1 3 5
�1 �3 1
0 2 3
1 5 2
1 5 8

3

77775
.

Exercise 22

Find the QR decomposition of A =

2

664

1 �1 4
1 4 �2
1 4 2
1 �1 0

3

775.

17



2.5 Least-squares problems

When A~x = ~b has no solution we can calculate a good approximation.

Definition 6 A least-squares solution of A~x = ~b is an ~̂x such that k~b�A~̂xk  k~b�A~xk for all
~x in Rn.

Theorem 21 The set of least-squares solutions of A~x = ~b coincides with the nonempty set of
solutions of the normal equations ATA~x = AT~b.

Theorem 22 Let A be m⇥ n. The following statements are logically equivalent.

1. The equation A~x = ~b has a unique least-squares solution for each ~b in Rm.

2. The columns of A are linearly independent.

3. The matrix ATA is invertible.

If these are true, then ~̂x = (ATA)�1AT~b.

The least-squares error of an approximation is k~b�A~̂xk.

For exampleA =

2

4
4 0
0 2
1 1

3

5,~b =

2

4
2
0
11

3

5. We need to calculateATA~̂x = AT~b !

4 0 1
0 2 1

�2

4
4 0
0 2
1 1

3

5

x̂1
x̂2

�
=


4 0 1
0 2 1

�2

4
2
0
11

3

5 !

17 1
1 5

� 
x̂1
x̂2

�
=


19
11

�
Then by either row reducing or by calculating the in-

verse you can find that ~̂x =


1
2

�
. The least square error then is k~b � A~̂xk = k

2

4
2
0
11

3

5 �

2

4
4
4
3

3

5 k =

(�2)2 + (�4)2 + 82 = 84.

2.5.1 Alternative calculations

When A has orthogonal columns then x̂p is given by
~b· ~ap
~ap· ~ap .

Theorem 23 If A = QR then ~̂x = R�1QT~b.

Instead of calculating ~̂x = R�1QT~b it is often easyer to row reduce R~̂x = QT~b.

18



2.5.2 Exercises

Exercise 23

Calculate the least squares solution of A~x = ~b with A =

2

4
1 3
1 �1
1 1

3

5 and ~b =

2

4
5
1
0

3

5. And give the

least squares error.

Exercise 24

Calculate the least squares solution of A~x = ~v with A =

2

4
2 0
�1 1
0 2

3

5 and ~b =

2

4
1
0
1

3

5.
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2.6 Least-squares in linear models

Given a set of data (Xi, Yi), we may wish to draw a line, Yi = �0 + �1Xi, through these points.

In a perfect sitiuation we have

Y1 = �0 + �1X1 (2.7)

Y2 = �0 + �1X2

...

Yn = �0 + �1Xn

Wich can also be written as 2

6664

Y1
Y2
...
Yn

3

7775
=

2

6664

1 X1

1 X2
...

...
1 Xn

3

7775


�0
�1

�
(2.8)

Or as
~Y = X~� (2.9)

If the points are not on a perfect line we can find �0 and �1 that makes the line the best by cal-
culating the least-squares solution of this system, thus by finding the solution of XT ~Y = XTX.

In some cases just a normal line does not fit the data right. Then in general we can find
y = �0f0(x)+ · · ·+�nfn(x) by placing the fk(x) in X and the �k in ~�. For example we can find

a parabola with ~Y =

2

64
1 x1 x21

...
1 x2 x22

3

75

2

4
�0
�1
�2

3

5

2.6.1 Exercises

Exercise 25

Find the least squares line y = �0 + �1x that fits best the data points (2, 3), (3, 2), (5, 1) and
(6, 0).
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2.7 Inner product spaces

2.7.1 Inner product

Definition 7 An inner product on a vector space V is a function h~u,~vi that gives a real number
and satisfies

1. h~u,~vi = h~v, ~ui.

2. h ~u+ v, ~wi = h~u, ~wi+ h~v, ~wi.

3. hc~u,~vi = ch~u,~vi.

4. h~u, ~ui � 0 and h~u, ~ui = 0 if and only if ~u = ~0.

A vector space with an inner product is a inner product space.

For polynomials the following inner product is often used. Let t0, · · · , tn be distinct nummers.
For p and p in Pn define hp, qi = p(t0)q(t0) + · · ·+ p(tn)q(tn). Checking each of the axioms will
show that this is indeed a inner product.

With this we can for example calculate hp, qi if t0 = �1, t1 = 2, t3 = 3, p(t) = 6 � t and
q(t) = t+ t2. hp, qi = p(�1)q(�1) + p(2)q(2) + p(3)q(3) = 7 ⇤ 0 + 4 ⇤ 6 + 3 ⇤ 12 = 60.

An other inner product is the one for C[a, b]. Defined as hp, qi = 1
b�a

R b
a p(t)q(t)dt.

2.7.2 Length, distance and orthogonality

The length of a vector is k~vk =
p
h~v,~vi. The distance between ~u and ~v is k~v � ~uk. Two vectors

are orthogonal if h~u,~vi = 0.

2.7.3 Gram-Schmidt and projections

The Gram-Schmidt process can not only be applied to Rn but also to other inner product spaces
to create orthogonal bases. The same holds for projections.

For example the inner product defined for polynomials evaluated at �2, -1, 0, 1 and 2. And the

polynomials 1, t and t2. The vector of values for 1, t and t2 are respectivelly

2

66664

1
1
1
1
1

3

77775
,

2

66664

�2
�1
0
1
2

3

77775
and

2

66664

4
1
0
1
4

3

77775
. Note that

2

66664

1
1
1
1
1

3

77775
·

2

66664

�2
�1
0
1
2

3

77775
= 0 hence h1, ti = 0. Therefore the first two vectors of the basis

are 1 and t. The last vector can be created by t2 � ht2,1i
h1,1i 1�

ht2,ti
ht,ti t = t2 � 2.

21



2.7.4 Best approximation

Also best approximations using projections can be calculated using the inner product.

2.7.5 Cauchy-Schwartz and Triangle inequallity

Theorem 24 |h~u,~vi|  k~ukk~vk.

Theorem 25 k~u+ ~vk  k~uk+ k~vk.

2.7.6 Exercises

Exercise 26

For the given inner product for polynomials evaluated at the points �2, �1 and 0, calculate
hp, qi with p(t) = t � 3t2 and q(t) = 4 + 2t. Also calculate kpk and kqk. Lastly calculate the
orthognal projection of q on the subspace spanned by p.

Exercise 27

Let V = C[�1, 1] and let the inner product be calculated as in this section. f(t) = t + t2

and g(t) = 1� 3t. Calculate hf, gi.
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Chapter 3

Symmetric matrices and the SVD

3.1 Symmetric matrices

3.1.1 Orthogonal diagonalizations

A symmetric matrix is a matrix such that AT = A.

Theorem 26 If A is symmetric, then any two eigenvectors from di↵erent eigenspaces are or-
thogonal.

If in the diagonlization A = PDP�1 P is an orthogonal matrix, then A is said to be orthogonal
diagonizable. And P�1 = P T .

Theorem 27 An n ⇥ n matrix is orthogonally diagonizable if and only if it is a symmetric
matrix.

It is however not enough to put all the eigenvectors in a matrix. When there is a eigenspace with
dimension 2, then Gramm-Schmidt must be applied to get the second orthogonal eigenvector.

For example: A =

2

4
1 2 2
2 1 2
2 2 1

3

5 which eigenvalues and corresponding eigenspaces are �1: ~v1 =

2

4
�1
1
0

3

5 and ~v2 =

2

4
�1
0
1

3

5. And 5: ~v3 =

2

4
1
1
1

3

5. The first two eigenvectors are not orthogonal, thus

we apply Gram-Schmidt. ~z2 = ~v2 � ~v2· ~v1
~v1· ~v1 ~v1 =

2

4
�1/2
�1/2
1

3

5. Normalizing and placing the vectors ~v1,

~z2 and ~v3 gives us P .
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3.1.2 Spectral theorem and decomposition

Theorem 28 An symmetric n⇥ n matrix A has the following properties:

1. A has n real eigenvalues, counting multiplicities.

2. The dimension of each eigenspace equals the multiplicity of �.

If A = PDP�1 =
⇥
~u1 · · · ~un

⇤
2

64
�1 0

. . .

0 �n

3

75

2

64
~u1

T

...
~un

T

3

75, then the spectral decomposition of A is

A = �1 ~u1 ~u1
T + · · ·+ �n ~un ~un

T .

3.1.3 Exercises

Exercise 28

Orthogonal diagonalize A =

2

4
1 1 5
1 5 1
5 1 1

3

5. The eigenvalues are �4, 4 and 7.

Exercise 29

Orthogonalize A =

2

4
3 �2 4
�2 6 2
4 2 3

3

5. The eigenvalues are �2 and 7.
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3.2 Quadratic forms

A quadratic form is a function such that Q(~x) = ~xTA~x. When calculating quadratic forms

you will notice that there is a link with symmetric matrices. For example if A =


2 �2
�2 3

�

then its quadratic form is 2x21 � 2x1x2 � 2x1x2 � 3x22 = 2x21 � 4x1x2 + x22. Or if Q(~x) =

4x21 + x22 � 2x23 + 3x1x2 + 12x2x3 then A in the quadratic form is A =

2

4
4 3/2 0
3/2 1 6
0 6 �2

3

5.

3.2.1 Change of variable

Preferably we want to loose the cross term. In order to do that we orthogonal diagonalize
A = PDP�1. Then the new quadratic form is ~yTD~y = (P�1~x)TD(P�1~x).

3.2.2 Classifying quadriatic forms

Definition 8 A qaudratic form Q is:

1. Positive definite if Q(~x) > 0 for all ~x 6= ~0.

2. Negative definite if Q(~x) < 0 for all ~x 6= ~0.

3. Indefinte if both negative and positive values are attained.

Theorem 29 Let A be n⇥ n symmetric, then its quadratic form is:

1. positive definite if and only if the eigenvalues of A are all positive.

2. negative definite if and only if the eigenvalues of A are all negative.

3. indefinite if and only if A has both positive and negative eigenvalues.

3.2.3 Exercises

Exercise 30

Calculate the quadratic form ~xTA~x with ~x =

2

4
�4
1
0

3

5 and A =

2

4
3 �2 0
�2 2 0
0 0 1

3

5.

Exercise 31

Find the matrix of the quadratic form: 5x21 + 2x23 � 6x1x2 + x2x3.

Exercise 32

Consider 3x21 +6x22 � 4x1x2. Classify the quadratic form. Also make a change of variable to
get a quadratic form with no cross-product term.
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3.3 Constrained optimalization

Sometimes we want to maximize or minimize a quadratic form under the condition that k~xk = 1.

Theorem 30 If A is a symmetric matrix, then its maximum, under the codition thatk~xk = 1,
is the greates eigenvalue of A and is attained when ~x is the unit eigenvector of A corresponding
to that eigenvalue. The minimum is equal to the smallest eigenvector and is attained when ~x is
the eigenvector corresponding to that eigenvalue.

Sometimes we say we have aditional constraints, for example that the ~x is orthogonal with the
eigenvector corresponding to the largest eigenvalue. Then the solution of the optimalization is
the second largest eigenvalue and its eigenvector. If it also has to be orthogonal to the second
largest, then take the third eigenvalue. Etc.

However, the constraint does not always gives us a problem with unit vectors. In that case
we need to rewrite the constraint such that it is about unitvectors.

3.3.1 Exercises

Exercise 33

Find the maximum value of Q(~x) subject to the constraint ~xT~x = 1, find the vector ~u where
this maximum is attained and find the maximum of Q(~x) subject to the constraints ~xT~x = 1
and ~xT~u = 0. Q(~x) = 3x21 + 3x22 + 5x23 + 6x1x2 + 2x1x3 + 2x2x3.
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3.4 Singular value decomposition

3.4.1 Singular values

Let A be a m⇥n matrix. Then ATA is a symmetric matrix and if �1, · · · ,�n are its eigenvalues
sorted from greatest to smallest. The singular values of A are �i =

p
�i. Which is the same as

the lengths of A~vi if ~vi is a eigenvalue of ATA.

Theorem 31 The set A~v1, · · · , A~vr with ~vi eigenvalues of ATA corresponding to nonzero sin-
gular values, is a orthogonal basis for Col A and rankA = r.

3.4.2 Singular value decomposition

Let ⌃ =


D 0
0 0

�
an m⇥ n matrix with D r ⇥ r diagonal.

Theorem 32 Let A be a m⇥n matrix with rank r. Then there exist an m⇥n matrix ⌃ which
its D contains the first r singular values of A. And there exist a m ⇥ m orhtogonal matrix U
and an n⇥ n orthogonal matrix V such that A = U⌃V T .

V can be constructed by placing the eigenvectors of ATA sorted in a matrix. U by placing 1
�i
A~vi

for i = 1, · · · , r together with m� r other vectors that make up a orthonormal basis for Rm in
a matrix.

3.4.3 Finding a SVD composition

Step 1 is finding the eigenvalues and corresponding orthonormal eigenvectors of ATA. Step 2 is
constructing ⌃ and V . Step 3 is constructing U .

For example A =

2

4
1 �1
�2 2
2 �2

3

5 then ATA =


9 �9
�9 9

�
which eigenvalues and corresponding eigen-

vectors are �1 = 18: ~v1 =


1/
p
2

�1/
p
2

�
and �2 = 0: ~v2 =


1/
p
2

1/
p
2

�
. Thus V =


1/
p
2 1/

p
2

�1/
p
2 1/

p
2

�
.

�1 =
p
18 and �2 = 0, therefore ⌃ =

2

4
3
p
2 0

0 0
0 0

3

5. To construct U calculate A~v1 =

2

4
2/

p
2

�4/
p
2

4/
p
2

3

5

and A~v2 =

2

4
0
0
0

3

5. ~u1 =
1
�1
A~v1 =

2

4
1/3
�2/3
2/3

3

5. The other columns of U must be chosen is such a way

that the columns of U form a orthonormal basis for R3. Thus both other vectors must satisfy

~uT1 ~x = 0, which is the same as x1 � 2x2 + 2x3 = 0. That gives us ~w1 =

2

4
2
1
0

3

5 and ~w2 =

2

4
�2
0
1

3

5.

Applying Gram-Schmidt with normalizations gives ~u2 =

2

4
2/
p
5

1/
p
5

0

3

5 and ~u3 =

2

4
�2/

p
45

4/
p
45

5/
p
45

3

5. Finally

construct U and write A = U⌃V T .
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3.4.4 Exercises

Exercise 34

Find the singular values decomposition of A =

2

4
�3 1
6 �2
6 �2

3

5.
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Chapter 4

Answers

Answer of exercise 1

A � �I =


7 3
3 �1

�
�


�2 0
0 �2

�
=


9 3
3 1

�
⇠


1 1/3
0 0

�
. The equation A � �I = ~0 has a

nonzero solution, therefore � = �2 is an eigenvalue. The general solution of (A � �I)~x = ~0 is

x2


�1/3
1

�
. Thus an eigenvalue is


�1/3
1

�
.

Answer of exercise 2

A��I =

2

4
1 2 2
3 �2 1
0 1 1

3

5�

2

4
3 0 0
0 3 0
0 0 3

3

5 =

2

4
�2 2 2
3 �5 1
0 1 �2

3

5. Augmenting with a colulmn of zeros

and row reducing gives

2

4
�2 2 2 0
3 �5 1 0
0 1 �2 0

3

5 ⇠ . . . ⇠

2

4
1 0 �3 0
0 1 �2 0
0 0 0 0

3

5

The equation A� �I = ~0 has a nonzero solution, therefore � = 3 is an eigenvalue. The general

solution of (A� �I)~x = ~0 is x3

2

4
3
2
1

3

5. Thus an eigenvalue is

2

4
3
2
1

3

5.

Answer of exercise 3

Calculate

2

4
3 6 7
3 3 7
5 6 5

3

5

2

4
1
�2
1

3

5 =

2

4
�2
4
�2

3

5 = (�2)

2

4
1
�2
1

3

5. Thus it is an eigenvector with eigenvalue

�2.

Answer of exercise 4

A� �I =

2

4
1 0 �1
1 �3 0
4 �13 1

3

5�

2

4
�2 0 0
0 �2 0
0 0 �2

3

5 =

2

4
3 0 �1
1 �1 0
4 �13 3

3

5. Augmenting with a column

29



of zeros and row reducing gives us

2

4
3 0 1 0
1 �1 0 0
4 �13 3 0

3

5 ⇠ . . . ⇠

2

4
1 0 �1/3 0
0 1 �1/3 0
0 0 0 0

3

5. Thus the general

solution is x3

2

4
1/3
1/3
1

3

5 therefore a basis for the eigenspace is

2

4
1/3
1/3
1

3

5.

Answer of exercise 5

det(A � �I) = det(


3 �6
1 �4

�
�


� 0
0 �

�
) =

����
3� � �6
1 �4� �

���� = (3 � �)(�4 � �) � 12 + 6 =

�2 + �� 6 = (�+ 3)(�� 2) = 0, �1 = �3, �2 = 2.

Answer of exercise 6

det(A��I) = det(

2

4
�1 0 1
�3 4 1
0 0 2

3

5�

2

4
� 0 0
0 � 0
0 0 �

3

5) =

������

�1� � 0 1
�3 4� � 1
0 0 2� �

������
= (2��)

����
�1� � 0
�3 4� �

���� =

(2� �)(�1� �)(4� �) = 0, �1 = 2, �2 = �1, �3 = 4.

Answer of exercise 7

First we have to find the eigenvalues and eigenvectors. det(A � �I) =

����
�7� � 2

13 4� �

���� =

(�7 � �)(4 � �) � 26 = �2 + 3� � 54 = (� � 6)(� + 9) = 0, �1 = 6, �2 = �9. Eigenvec-

tor corresponding to �1:


�7� 6 2 0
13 4� 6 0

�
⇠


�13 2 0
13 �2 0

�
⇠


�13 2 0
0 0 0

�
, x1 = 2/13x2,

therfore ~v1 =


2/13
1

�
. Eigenvector corresponding to �2:


�7 + 9 2 0

13 4 + 9 0

�
⇠


2 2 0
13 13 0

�
⇠


2 2 0
0 0 0

�
, x1 = �x2, theefore ~v2 =


�1
1

�
. Now we can construct PDP�1. P =


2/13 �1
1 1

�
,

D =


6 0
0 �9

�
, P�1 = (1/(13/15)


1 1
�1 2/13

�
=


13/15 13/15
�13/15 26/195

�
. Optionally you could have

scaled the eigenvectors to simplify calculations.

Answer of exercise 8

We need to find the eigenvectors. Eigenvectors corresponding to �1:

2

4
�2 �4 �6 0
�1 �2 �3 0
1 2 3 0

3

5 ⇠

2

4
1 2 3 0
0 0 0 0
0 0 0 0

3

5 which gives us ~v1 =

2

4
�2
1
0

3

5 and ~v2 =

2

4
�3
0
1

3

5 which are clearly linearly independent.

Eigenvector corresponding �2:

2

4
�1 �4 �6 0
�1 �1 �3 0
1 2 4 0

3

5 ⇠ . . . ⇠

2

4
1 0 2 0
0 1 1 0
0 0 0 0

3

5 which gives us ~v3 =

2

4
�2
�1
1

3

5. Now we can construct PDP�1. P =

2

4
�2 �3 �2
1 0 �1
0 1 1

3

5, D =

2

4
2 0 0
0 2 0
0 0 1

3

5, inverting P
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yields P�1 =

2

4
�1 �1 �3
1 2 4
�1 �2 �3

3

5.

Answer of exercise 9

[T (~c1)]B =


3
�1

�
and [T (~c2)]B =


�1
�2

�
, therefore M =


3 �1
�1 �2

�
.

Answer of exercise 10

First of all compute T (~e1) = 0~b1 � ~b2 + ~b3, T (~e2) = �~b1 +0~b2 � ~b3 and T (~e3) = ~b1 + ~b2 +0~b3.

Then calculate [T (~e1)]B =

2

4
0
�1
1

3

5, [T (~e2)]B =

2

4
�1
0
�1

3

5 and [T (~e3)]B =

2

4
1
�1
0

3

5. And thus M =

2

4
0 �1 1
�1 0 �1
1 �1 0

3

5.

Answer of exercise 11

Compute T (1) = 1 + t2, T (t) = t + t3, T (t2) = t2 + t4. Expressed in the standard basis

T (1) =

2

66664

1
0
1
0
0

3

77775
, T (t) =

2

66664

0
1
0
1
0

3

77775
and T (t2) =

2

66664

0
0
1
0
1

3

77775
. Thus M =

2

66664

1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

3

77775
.

Answer of exercise 12

det(A��I) =

����
2� � �3
1 2� �

���� = (2��)2+3 = �2�4�+7 = 0, �1 =
1
2(4�

p
42 � 4 ⇤ 1 ⇤ 7) =

2 � 1
2

p
�12 = 2 � i

p
3 then �2 = �1 = 2 + i

p
3. The eigenvalue corresponding to �1:

2� (2� i
p
3 �3 0

1 2� (2� i
p
3 0

�
Because we know the first and second row must be multi-

ples of each other we can set the second row to all zeros. ⇠

i
p
3 �3 0

0 0 0

�
, i
p
3x1 = 3x2. Now

pick x1 = 1, i
p
3 = 3x2, x2 = 1/3i

p
3 therefore ~v1 =


1

1/3i
p
3

�
and ~v2 = ~v1 =


1

�1/3i
p
3

�
.

Answer of exercise 13

Because A =


a �b
b a

�
we can easily see that the eigenvalues are

p
3±i. r = |�| =

p
a2 + b2 =

p
3 + 1 = 2.

p
3 �1
1

p
3

�
=


2 0
0 2

� 
cos � �sin �
sin � cos �

�
So 2cos� =

p
3, � = ⇡

6 .

Answer of exercise 14
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First find the eigenvalues and eigenvectors of A.

����
3� � �1
2 4� �

���� = (3��)(4��)+2 = �2�7�+

14 = 0, � = 1/2(7±
p
�7) = 7/2±(1/2)i

p
7. Now find the eigenvectors


3� (7/2� 1/2

p
7) �1

2 4

�
,

(�1/2 + 1/2i
p
7)x1 = x2, x1 = 1, x2 = �1/2 + 1/2i

p
7, ~v1 =


1

�1/2 + 1/2i
p
7

�
. Now we can

construct P and C. P =


1 0

�1/2 1/2
p
7

�
and C =


7/2 �1/2

p
7

1/2
p
7 7/2

�
.

Answer of exercise 15

To use the given formula we need to solve ~x0 = c1 ~v1+ . . .+ cn ~vn in this case that will give us

the matrix

2

4
1 2 �3 �2
0 1 �3 �5
�3 �5 7 3

3

5 . . .

2

4
1 0 0 2
0 1 0 1
0 0 1 2

3

5 then the formula gives us ~xk = c1(�1)k ~v1 +

. . . + cn(�n)k ~v1 = ~xk = 2(3)k ~v1 + 1(4/5)k ~v2 + 2(3/5)k ~v3. When k ! 1 ~xk will look more and
more like 2(3)k ~v1 because the other parts tend to zero.

Answer of exercise 16

We need to find the eigenvalues

����
0.3� � 0.4
�0.3 1.1� �

���� = �2 � 1.4� + 0.45. Using the quadratic

formula we find �1 = 0.5 and �2 = 0.9. Both eigenvalues are smaller than 1 so the origin is a
attractor. For the direction of greatest attraction we need to find the eigenvector corresponding

to �1.


�0.2 0.4 0
�0.3 0.6 0

�
⇠


1 �2 0
0 0 0

�
, ~v1 =


2
1

�
. The direction of greatest attraction is along

that eigenvector.

Answer of exercise 17

~u ·~v = 3(�2)+(�1)3+6⇤2 = 3. The distance between ~u and ~v = k~u�~vk = k

2

4
5
�4
�4

3

5 k =
p
57.

To normalize the vectors we need to multiply both vectors with 1 divided by their length, so
first calculate k~uk =

p
~u · ~u =

p
14 and k~vk =

p
~v · ~v =

p
49 = 7. Then the normalized vectors

are ~u0 = 1p
14

2

4
3
�1
2

3

5 and ~v0 = 1
7

2

4
�2
3
6

3

5. ~u and ~v are not orthogonal to each other because their

inproduct is not equal to zero.

Answer of exercise 18

We need to write ~x = ~̂x+ ~z. ~̂x = ~x· ~u1
~u1· ~u1

~u1 = 14
7 ~u1 =

2

664

2
4
2
2

3

775. Then ~z = ~x� ~̂x =

2

664

4
5
�3
3

3

775�

2

664

2
4
2
2

3

775 =

2

664

2
1
�5
1

3

775.
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Answer of exercise 19

~̂y = ~y· ~u1
~u1· ~u1

~u1 +
~y· ~u2
~u2· ~u2

~u2 = 30
10 ~u1 +

26
26 ~u2 =

2

664

�1
�5
�3
9

3

775. The distance between ~y and W is k~̂y � ~yk =

k

2

664

�4
�4
�4
�4

3

775 k =
p
64 = 8.

Answer of exercise 20

We apply the Gram-Schmidt process. ~v1 = ~x1. ~v2 = ~x2 � ~x2· ~v1
~v1· ~v1 ~v1 = ~x2 � �45

15 ~v1 =

2

664

4
6
�3
0

3

775.

Thus an orthogonal basis for W is {~v1, ~v2}.

Answer of exercise 21

~v1 = ~a1 =

2

66664

1
�1
0
1
1

3

77775
, ~v2 = ~a2� ~a2· ~v1

~v1· ~v1 ~v1 =

2

66664

�1
1
2
1
1

3

77775
and ~v3 = ~a3� ~a3· ~v1

~v1· ~v1 ~v1�
~a3· ~v2
~v2· ~v2 ~v2 = ~a3� 14

4 ~v1� 12
8 ~v2 =

2

66664

3
3
0
�3
3

3

77775
. Thus an orthogonal basis for W is {~v1, ~v2, ~v3}.

Answer of exercise 22

Gram-Schmidt gives us an orthogonal basis for the columnspace ofA which is {

2

664

1
1
1
1

3

775 ,

2

664

�5/2
5/2
5/2
�5/2

3

775 ,

2

664

2
�2
2
�2

3

775}

normalizing and placing these vectors in a matrix gives us Q =

2

664

1/2 �1/2 1/2
1/2 1/2 �1/2
1/2 1/2 1/2
1/2 �1/2 �1/2

3

775. Multiply-

ing A with QT gives us R = QTA =

2

4
2 3 2
0 5 �2
0 0 4

3

5.

Answer of exercise 23

We have to solve ATA = AT~b.


3 3
3 11

�
=


6
14

�
, row reducing gives us ~̂x =


1
1

�
. For the least
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squares error we need to calculate kA~̂x�~bk = k

2

4
4
0
2

3

5�

2

4
5
1
0

3

5 k = k

2

4
�1
�1
2

3

5 k =
p
6.

Answer of exercise 24

We have to solve ATA = AT~b.


5 �1
�1 5

�
=


2
2

�
, row reducing gives us ~̂x =


1/2
1/2

�
.

Answer of exercise 25

Make design matrix X =

2

664

1 2
1 3
1 5
1 6

3

775 and observation vector ~Y =

2

664

3
2
1
0

3

775. Now we need to calculate

the least squares solution. So calculate XTX =


4 16
16 74

�
and XT ~Y =


6
17

�
. Row reduction

gives us ~� =


4.3
�0.7

�
. Thus the line is y = 4.3� 0.7x.

Answer of exercise 26

hp, qi = p(�2)q(�2) + p(�1)q(�1) + p(0)q(0) = (�14)(0) + (�4)(2) + (0)(4) = �8. kpk =p
hp, pi =

p
(�14)2 + (�4)2 + 02 =

p
212. kqk =

p
hq, qi =

p
02 + 22 + 42 =

p
20. projpq =

hp,qi
hp,pip = �8

212p = �8
212(t� 3t2).

Answer of exercise 27

hf, gi = 1
1+1

R 1
�1(t+ t2)(1� 3t)dt = 1

2

R 1
�1 t� 2t2 � 3t3dt = 1

2(
1
2 t

2 � 2
3 t

3 � 3
4 t

4|1�1) = �2
3 .

Answer of exercise 28

We need to find the eigenvectors corresponding to the given eigenvalues. Straightforward

calculations gives us ~v1 =

2

4
�1
0
1

3

5, ~v2 =

2

4
1
�2
1

3

5 and ~v3 =

2

4
1
1
1

3

5. Normalizing and placing them in

a matrix gives us P =

2

4
�1/

p
2 1/

p
6 1/

p
3

0 �2/
p
6 1/

p
3

1/
p
2 1/

p
6 1/

p
3

3

5 placing the corresponding eigenvectors in a

matrix gives us D =

2

4
�4 0 0
0 4 0
0 0 7

3

5. P�1 = P T .

Answer of exercise 29

We need to find the eigenvectors. Calculations will give us ~v1 =

2

4
1
1/2
�1

3

5 corresponding to �2.
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~v2 =

2

4
1
�2
0

3

5 and ~v3 =

2

4
0
2
1

3

5 corresponding to 7. The last two eigenvectors are not orthogonal,

so apply Gram-Schmidt to get ~v3
0 =

2

4
4/5
2/5
1

3

5. Normalizing these vectors and placing them in a

matrix gives us P =

2

4
1/
p
5 4/3⇥

p
5 2/3

�2/
p
5 2/3⇥

p
5 1/3

0 5/3⇥
p
5 �2/3

3

5. D =

2

4
7 0 0
0 7 0
0 0 �2

3

5.

Answer of exercise 30

Because A is symmetric we know that the quadratic form is 3x21 + 2x22 + x23 � 4x1x2. In this
case is that equal to 66.

Answer of exercise 31

This can be written as the following symmetric matrix. A =

2

4
5 �3 0
�3 0 1/2
0 1/2 2

3

5.

Answer of exercise 32

The matrix of the quadratic form is A =


3 �2
�2 6

�
. Calculations will show that the eigen

values are 7 and 2 therefore the quadratic form is positive definite. The eigenvectors are ~v1 =
�1
2

�
and ~v2 =


2
1

�
respectively. Scaling these will give ~u1 =


�1/

p
5

2/
p
5

�
and ~u2 = ~v2 =


2/
p
5

1/
p
5

�
.

With these we can make a matrix P that changes A into D. P =


�1/

p
5 2/

p
5

2/
p
5 1/

p
5

�
and D =


7 0
0 2

�
. If ~x = P~y then the new quadratic form is 7y21 + 2y22.

Answer of exercise 33

The matrix of this quadratic form is A =

2

4
3 3 1
3 3 1
1 1 5

3

5. The eigenvalues of this matrix are 0,

4 and 7. The maximum of Q(~x) is equal to the greatest eigenvalues, thus 7 this is attained for

the unit eigenvector corresponding to 7, which is ~u = 1p
3

2

4
1
1
1

3

5. The maximum under the second

contraints is the second largest eigenvalue 4.

Answer of exercise 34

ATA =


81 �27
�27 9

�
whose eigenvalues are �1 = 90 and �2 = 0. The eigenvectors are

~v1 =


3
�1

�
and ~v2 =


1
3

�
. Normalizing gives us ~v1

0 =


3/
p
10

�1/
p
10

�
and ~v2

0 =


1/
p
10

3/
p
10

�
. Now we
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can construct V =


3/
p
10 1/

p
10

�1/
p
10 3/

p
10

�
. The singular values are �1 =

p
90 = 3

p
10 and �2 = 0.

Now we can construct ⌃ =

2

4
3
p
10 0
0 0
0 0

3

5. ~u1 = 1
�1
A~v1

0 =

2

4
�1/3
2/3
2/3

3

5. Because �2 = 0 we have to

find ~u2 and ~u3 by extending { ~u1} to a orthonormal basis for R3. Thus ~u1
T~x = 0 which gives us

~w2 =

2

4
2
1
0

3

5 and ~w3 =

2

4
2
0
1

3

5 applying Gram-Schmidt and normalizing gives us ~u2 =

2

4
2/3
�1/2
2/3

3

5 and

~u3 =

2

4
2/3
2/3
�1/3

3

5. Thus A = U⌃V T =

2

4
�1/3 2/3 2/3
2/3 �1/3 2/3
2/3 2/3 �1/3

3

5

2

4
3
p
10 0
0 0
0 0

3

5

3/
p
10 �1/

p
10

1/
p
10 3/

p
10

�
.

36


