Vrije Universiteit Amsterdam, Faculty of Science Linear Algebra test 4

April 22, 2021

You have 40 minutes to complete this test.

grade = points + 1

Use of calculators, books or notes is not allowed. Motivate your answers.

Question 1 (3p)

Given is the matrix $A = \begin{bmatrix} 5 & 4 \\ -2 & 1 \end{bmatrix}$.

- (a) Find the eigenvalues of A.
- (b) Give an invertible matrix P, and a matrix C of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, such that AP = PC.

Question 2 (3p)

Given are the vectors
$$\mathbf{w_1} = \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}$$
, $\mathbf{w_2} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{w_3} = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 5 \\ 0 \\ 5 \\ 10 \end{bmatrix}$. Let $W = \text{Span}\{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$.

- (a) Show that $\{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$ is an orthogonal basis for W.
- (b) Find the orthogonal projection of y onto W.
- (c) Compute the distance from y to W.

Question 3 (3p)

Mark each of the following statements true or false. If the statement is true, give a proof. If the statement is *false*, give a proof or provide a counterexample.

- (a) Let \mathbf{x} , \mathbf{y} and \mathbf{z} be three distinct vectors in \mathbb{R}^2 . If \mathbf{x} is orthogonal to \mathbf{y} , and \mathbf{y} is orthogonal to \mathbf{z} , then \mathbf{x} is orthogonal to \mathbf{z} .
- (b) If $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ is an orthonormal set of vectors in \mathbb{R}^n , then $||\mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3}|| = \sqrt{3}$.
- (c) Let λ be a complex eigenvalue of the orthogonal matrix A. Then the modulus of λ is one, i.e. $|\lambda|=1$.