Use of calculators, books or notes is not allowed. Motivate your answers.

Question 1 (4p)

Given are the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & k \\ -9 & 6k & 3 \end{bmatrix}$$
 and the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$.

Find the value(s) of k for which the system $A\mathbf{x} = \mathbf{b}$ has

- 1) no solution;
- 2) infinitely many solutions;
- 3) a unique solution.

Explain your answers.

Question 2 (3p,3p)

Given is the matrix
$$B = \begin{bmatrix} 3 & 6 & -3 \\ -1 & -2 & 1 \\ 2 & 5 & 0 \\ 3 & 5 & -5 \end{bmatrix}$$
.

- (a) Are the columns of B linearly dependent? If so, give the linear dependence relation. If not, explain why.
- **(b)** Find a basis for
 - 1) the column space of B;
 - 2) the row space of B;
 - 3) the null space of B.

Question 3 (4p)

Given is the system of equations

$$x + y - z = 0$$
$$3x - 2y + z = 3$$
$$x + 3y - 2z = 0.$$

Use Cramer's rule to find z.

Question 4 (2p,1p,2p,1p)

Given are the matrices $A = \begin{bmatrix} 3 & 2 \\ -7 & -5 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & -7 \\ -13 & 16 \end{bmatrix}$.

- (a) Find the matrix B that solves AB = C.
- (b) Explain why the columns of A form a basis of \mathbb{R}^2 .

Consider the bases $\mathcal{A} = \left\{ \begin{bmatrix} 3 \\ -7 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 5 \\ -13 \end{bmatrix}, \begin{bmatrix} -7 \\ 16 \end{bmatrix} \right\}$ of \mathbb{R}^2 .

- (c) Find the change-of-coordinates matrix from \mathcal{A} to \mathcal{C} .
- (d) How does this change-of-coordinates matrix relate to the matrix B?

Question 5 (2p,2p,2p,2p)

Mark each of the following statements true or false. If the statement is true, give a proof. If the statement is false, give a proof or provide a counterexample.

- (a) Let A be an $n \times n$ matrix. If the columns of A are linearly independent, then the columns of A^2 span \mathbb{R}^n .
- (b) Let A and B be $n \times n$ matrices, and let B be invertible. Then $\det(BAB^{-1}) = \det(A)$.
- (c) The set $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge y \right\}$ is a subspace of \mathbb{R}^2 .
- (d) If the linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$, defined by $T(\mathbf{x}) = A\mathbf{x}$, is onto, then the dimension of the kernel of T is 2.

Question 6 (3p,2p,1p,2p)

Given is the set $H = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : a+b+c=0 \right\}$.

- (a) Prove that H is a subspace of \mathbb{R}^3 .
- (b) Find a basis of H.

Let the linear transformation $T: H \to \mathbb{P}_2$ be defined by $T\left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = a + bt + ct^2$.

- (c) Is T onto? Explain.
- (d) Find two polynomials that together span the range of T.