Use of calculators, books or notes is <u>not</u> allowed. Motivate your answers.

Question 1 (2p,1p,2p)

Given are the matrix
$$A = \begin{bmatrix} 3 & 4 & 3 & -4 \\ 2 & 3 & 3 & -3 \\ 4 & 7 & 9 & -7 \end{bmatrix}$$
 and the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ k \end{bmatrix}$.

- (a) Determine the value(s) of k for which the system $A\mathbf{x} = \mathbf{b}$ is consistent.
- (b) Do the columns of A span \mathbb{R}^3 ? Explain.
- (c) Find a basis for the null space of A.

Question 2 (2p,3p,3p,1p)

Given is the matrix
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
.

- (a) Compute the determinant of B.
- (b) Find the eigenvalues of B.
- (c) Give a basis for each eigenspace of B.
- (d) Is B diagonalizable? Explain.

Question 3 (3p,2p,2p,2p)

Let
$$W$$
 be a subspace of \mathbb{R}^4 spanned by $\mathbf{w}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \\ 0 \end{bmatrix}$ and $\mathbf{w}_3 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 8 \end{bmatrix}$.

(a) Find an orthogonal basis for W.

Let
$$\mathbf{y} = \begin{bmatrix} 3 \\ -8 \\ 9 \\ 0 \end{bmatrix}$$
. The system $c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3 = \mathbf{y}$ is inconsistent.

- (b) Find the best approximation of y by vectors of W.
- (c) Find the least-squares solution of the system $c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3 = \mathbf{y}$.
- (d) Compute the least-squares error. (You do not need to simplify your answer.)

Question 4 (2p,2p,2p,2p,2p,2p)

Mark each of the following statements true or false. If the statement is true, give a proof. If the statement is false, give a proof or provide a counterexample.

- (a) Let A be an $n \times n$ matrix with nonzero columns. If the columns of A are orthogonal, then the determinant of A is nonzero.
- (b) There exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ to $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ to $\begin{bmatrix} 6 \\ 6 \end{bmatrix}$.
- (c) The set $H = \left\{ \begin{bmatrix} a-2b\\3a\\2a+3b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^3 .
- (d) If the matrix A is diagonalizable, then A is invertible.
- (e) If the matrix A is invertible, then A is diagonalizable.
- (f) Let A be an $n \times n$ matrix. If $A = A^2$ and λ is an eigenvalue of A, then $\lambda = 0$ or $\lambda = 1$.

Question 5 (2p,2p,2p)

Let the transformation $T: \mathbb{R}^3 \to \mathbb{P}_2$ be defined by $T\left(\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}\right) = (3a_0 + a_2)t + a_1t^2$.

- (a) Determine the kernel of T.
- (b) Is T onto? Is T one-to-one? Explain.
- (c) Find the matrix for T relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \right\}$ for \mathbb{R}^3 and the standard basis $\mathcal{C} = \{1, t, t^2\}$ for \mathbb{P}_2 .

Question 6 (3p,1p)

Given is the matrix $M = \begin{bmatrix} 4 & -2 \\ 1 & 5 \\ 4 & -2 \end{bmatrix}$.

- (a) Give a Singular Value Decomposition of M.
- (b) Now write down a Singular Value Decomposition of M^T .