Use of calculator, book or notes is not allowed.

There are 6 exercises in this exam. Points are divided as follows.

The grade for this final exam will be computed as follows: Grade = $\frac{\text{\#points}}{4} + 1$

1. The matrix A is given by

$$A = \begin{bmatrix} 2 & 2 & -1 \\ 2 & 5 & 5 \\ 2 & 2 & -1 \end{bmatrix}.$$

- **a.** Determine a basis for $\operatorname{Nul} A$ as well as a basis for $\operatorname{Col} A$.
- **b.** What is rank A?
- **c.** Find an orthogonal basis for $\operatorname{Col} A$.

2. Let the matrix A be given by

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ p & 1 & 3 \end{bmatrix},$$

where p is a real number.

- **a.** For which value of p does the subspace $\operatorname{Nul}(A-2I)$ have dimension 2? From here on p has the value you found in part **a.**
- **b.** Find the eigenvalues and the corresponding eigenvectors of A.
- **c.** Is A diagonalizable? If so why, if not why not?

3. Given are the vectors
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

Let W be the subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$.

- **a.** Why is the projection onto W of the vector \mathbf{x}_4 equal to the zero vector $\mathbf{0}$? Let A be the 4×3 matrix whose columns are the vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ in that order.
- **b.** Let **b** be the vector $\mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$. Find the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$.

Also determine the least squares error.

4. Let
$$\mathbf{u} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\mathbf{x} = 2\mathbf{x} + 3(\mathbf{x} \bullet \mathbf{u}) \cdot \mathbf{u}.$$

- **a.** Find the standard matrix A of T.
- **b.** Compute $T\mathbf{u}$.
- **c.** For $\mathbf{x} \perp \mathbf{u}$ compute $T\mathbf{x}$.
- **d.** Find an orthonormal basis for Nul(A-2I).
- **e.** Give a spectral decomposition of A.
- 5. Which of the following statements are true and which are false? Explain your answer when the statement is true, in case it is false give a counterexample.
- **a.** If the columns of A are dependent then zero is an eigenvalue of A.
- **b.** If $Q(\mathbf{x})$ is a quadratic form then there is a unique matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- **6.** Let A be a symmetric matrix and let $A = U\Sigma V^T$ be the singular value decomposition of A, and $A = WDW^T$ the spectral decomposition of A. The goal of this exercise is to study a possible relation between the two.
- **a.** Take $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. What are the eigenvalues of A and the eigenvectors of A?
- **b.** For A as in part **a.** what are the singular values? How would you be able to find U and V and Σ for this example in terms of the eigenvalues and eigenvectors of A?
- ${f c.}$ Describe how in general the singular value decomposition for a symmetric matrix A is related to the spectral decomposition.