Question 1 3x10=30 points

- (A) Consider the sentence $((\neg A \lor \neg B) \Rightarrow (A \Rightarrow \neg B)) \land (A \lor B)$
 - Is this sentence satisfiable?
 - Is this sentence valid?
 - Is this sentence a contradiction?
 - None of the above

Choose the correct answer and explain.

- (B) Consider the pair of sentences $(\neg A \lor \neg B) \Rightarrow \neg (A \land B)$ and $((A \Rightarrow B) \lor (B \Rightarrow C))$. Are the sentences logically equivalent? Explain.
- (C) Derive a weighted partial MAXSAT formula that incorporates the following statements about geese:
 - 1. All geese are white.
 - 2. Geese often have two legs.
 - 3. It is very likely that a goose is either white or has two legs or both.
 - 4. If a goose does not have wings, it cannot fly.

You may use the following variables:

W = Goose has wings

X =Goose is white

Y =Goose has two legs

Z = Goose can not fly

Question 2 2x10=20 points

- (A) Translate the following sentences from Description Logic ALC to English language and vise versa. Suppose that the concept names are Kid and Ice-Cream and the role name is likes.
 - $\exists like.Ice Cream \sqsubseteq Kids$
 - Every kid likes something
 - Everybody likes ice-cream
- (B) Use a tableau to prove whether $(\forall r.A \sqcap \forall r.B) \sqsubseteq \forall r.(A \sqcap B)$ is satisfiable or not.

Question 3 10 points

Use the Davis Putnam procedure to prove or disprove satisfiability of the formula $(X \lor Y \lor Z) \land (X \lor \neg Y) \land (Y \lor \neg Z) \land (Z \lor \neg X) \land (\neg X \lor \neg Y \lor \neg Z)$ Label each step in your derivation with the part of the DP algorithm that you applied.

Question 42x5=10

- a. Give a pseudocode description of the GSAT procedure.
- b. Explain the advantages and disadvantages of short and long restart intervals.

Question 5.10 points

Check out the statements below whether they are true or not, and label them accordingly with either "true" or "false".

- a) If $\alpha \models \beta$ and $Pr(\alpha)=0$, then $Pr(\beta)=0$.
- b) If $\alpha \models \beta \models \gamma$, then $Pr(\alpha \mid \beta) \ge Pr(\alpha \mid \gamma)$.
- c) In the interaction graph G below, if we eliminate 4, we get G'

d) Assume G' above, according to the order elimination heuristic of "choosing the node with smallest degree", one possible elimination order is: 1, 5, 3, 2.

Question 6 2x10= 20 points

Consider the Bayesian network in the figure, and answer the questions below accordingly.

a) Are the statements below true or false? Cross the correct option:

 $IPr(D, \emptyset, C)$. [True or False]

 $IPr(E,{A},B)$. [True or False]

 $IPr(\{BD\},\{A,C\},E)$. [True or False]

 $IPr(C, \{B,E\}, A)$. [True or False]

- b) 1. Calculate the probability Pr(A=true, B=false, E=true).
 - 2. Calculate the probability $Pr(A=false, B=true \mid C=true)$.