

Preparation Exam Introduction to Time Series

Bachelor Econometrics and Operations Research Faculty of Economics and Business Administration

Exam: Introduction to Time Series

Code: E_EOR3_ITS
Coordinator: dr. F. Blasques

Date:

Time:

Duration: 2 hours and 45 minutes

Calculator: Not allowed Graphical calculator: Not allowed

Number of questions: 4
Type of questions: Open
Answer in: English

Credit score: 100 credits counts for a 10

Grades: Made public within 10 working days

Inspection: By appointment (send e-mail to f.blasques@vu.nl)

Number of pages: 3, including front page

- Read the entire exam carefully before you start answering the questions.
- Be clear and concise in your statements, but justify every step in your derivations.
- The questions should be handed back at the end of the exam. Do not take it home.

Good luck!

Question 1 [35 points] ARMA Models

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a time-series generated by an ARMA(2, 2) model

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} \quad , \quad t \in \mathbb{Z} ,$$

where $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a sequence of white noise innovations with variance $\sigma_{\epsilon}^2 > 0$.

- (a) Give the definitions of strict stationarity and weak stationarity. Can you give an example of a strictly stationary time-series that is not weakly stationary? Justify your answer.
- (b) Please rewrite the ARMA(2, 2) model in lag polynomial form $\phi(L)X_t = \theta(L)\epsilon_t$. Give an expression for the polynomials $\phi(L)$ and $\theta(L)$. Use the general weak stationarity theorem to show that $\{X_t\}_{t\in\mathbb{Z}}$ is weakly stationary if $\phi(L)$ is invertible.
- (c) Suppose that $|\phi_1| < 1$, $\theta_1 \neq 0$ and $\phi_2 = \theta_2 = 0$. Calculate the unconditional mean and variance of $\{X_t\}_{t\in\mathbb{Z}}$. In other words, derive an expression for $\mathbb{E}(X_t)$ and \mathbb{V} ar(X_t).
- (d) Suppose now that $\phi_1 \neq 0$ and $\phi_2 \neq 0$ and $\theta_1 = \theta_2 = 0$. Additionally, assume that the innovations $\{\epsilon_t\}_{t\in\mathbb{Z}}$ are independent and identically distributed (iid) Gaussian random variables $\{\epsilon_t\}_{t\in\mathbb{Z}} \sim \text{NID}(0, \sigma_{\epsilon}^2)$. Produce the 2-step ahead forecast and the variance of the 2-step ahead forecast error. Derive 95% confidence bounds for your forecast.

Question 2 [15 points] ML Estimation

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a time-series generated by a MA(1) process,

$$X_t = \theta_1 \epsilon_{t-1} + \epsilon_t \quad , \quad t \in \mathbb{Z} ,$$

with independent and identical Gaussian innovations $\{\epsilon_t\}_{t\in\mathbb{Z}} \sim \text{NID}(0, \sigma_{\epsilon}^2)$ and $\sigma_{\epsilon}^2 > 0$. Note that this implies that ϵ_t has the following probability density function:

$$f(\epsilon_t; \sigma_{\epsilon}^2) = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} e^{-\epsilon_t^2/2\sigma_{\epsilon}^2} , t \in \mathbb{Z}$$

- (a) Give an expression of the log likelihood function for the unknown parameters $(\theta_1, \sigma_{\epsilon}^2)$ using the joint Gaussianity of the sample $X_1, ..., X_T$.
- (b) Write down the conditional likelihood function using prediction error decomposition starting at t = 2.

Question 3 [15 points] Unit-Root Testing

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a time-series generated by an AR(2) process,

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t \quad , \quad t \in \mathbb{Z} ,$$

where $\{\epsilon_t\}_{t\in\mathbb{Z}} \sim WN(0, \sigma_{\epsilon}^2)$ with $\sigma_{\epsilon}^2 > 0$ and consider the ADF regression,

$$\Delta X_t = \beta X_{t-1} - \phi_2 \Delta X_{t-1} + \epsilon_t.$$

- (a) (7pts) Re-write the AR(2) model in the ADF regression form. Show that testing the hypothesis $H_0: \beta = 0$ is equivalent to testing for a unit root in the polynomial $\phi(z) = 1 \phi_1 z \phi_2 z^2$.
- (b) Why is it important to use a general-to-specific approach in the specification of the ADF regression? Justify your answer.

Question 4 [35 points] ADL, Error Correction and Cointegration

Let $\{Y_t\}_{t\in\mathbb{Z}}$ be a time-series generated by an ADL(1,1) process,

$$Y_t = \alpha + \phi Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + \epsilon_t \quad , \quad t \in \mathbb{Z} ,$$

where $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a sequence of iid white noise innovations with variance $\sigma_{\epsilon}^2 > 0$.

- (a) Suppose $|\phi| < 1$. Use the ADL(1,1) model to derive the h-step ahead multiplier for h = 1, 2, 3. Derive the long run multiplier and explain its meaning.
- (b) Suppose that $\{X_t\}_{t\in\mathbb{Z}}$ is generated by the following AR(2) model with intercept

$$X_t = \gamma_0 + \gamma_1 X_{t-1} + \gamma_2 X_{t-2} + u_t \quad , \quad t \in \mathbb{Z} ,$$

where $\{u_t\}_{t\in\mathbb{Z}}$ is a sequence of iid white noise innovations with variance $\sigma_u^2 > 0$.

Calculate the the impulse response function (IRF) of $\{Y_t\}_{t\in\mathbb{Z}}$ given the origin x for the time-series $\{X_t\}_{t\in\mathbb{Z}}$, the origin y for the time-series $\{Y_t\}_{t\in\mathbb{Z}}$, and a shock of magnitude v in the innovation $\{u_t\}_{t\in\mathbb{Z}}$ at time t=s. In particular, give the IRF for t=s-1, $t=s,\ t=s+1$ and t=s+2.

(c) Let $\{Y_t\}_{t\in\mathbb{Z}}$ and $\{X_t\}_{t\in\mathbb{Z}}$ be I(1) time series. Suppose that you have obtained the following estimates for the parameters of the ADL(1,1) model above:

Parameter	α	ϕ	β_0	β_1	σ^2_ϵ
Estimate	0.11	0.94	1.28	0.01	1.14

Furthermore, suppose that the p-values you obtained indicate that all parameters are significantly different from zero at the 5% significance level. Does $\{X_t\}_{t\in\mathbb{Z}}$ Granger cause $\{Y_t\}_{t\in\mathbb{Z}}$? Can $\{Y_t\}_{t\in\mathbb{Z}}$ Granger cause $\{X_t\}_{t\in\mathbb{Z}}$? Are $\{Y_t\}_{t\in\mathbb{Z}}$ and $\{X_t\}_{t\in\mathbb{Z}}$ cointegrated? Justify your answers carefully and in detail.