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Question 1 [35 points] ARMA Models

Let {Xt}t∈Z be a time-series generated by an ARMA(2, 2) model

Xt = φ1Xt−1 + φ2Xt−2 + εt + θ1εt−1 + θ2εt−2 , t ∈ Z ,

where {εt}t∈Z is a sequence of white noise innovations with variance σ2
ε > 0.

(a) (6 pts) Give the definitions of strict stationarity and weak stationarity. Can you give
an example of a strictly stationary time-series that is not weakly stationary? Justify
your answer.

Answer:

[2pts ] A time series {Xt}t∈Z is strictly stationary if the distribution of any finite

subvector is invariant in time (X1, . . . , Xh)
d
= (Xt, . . . , Xt+h) for all t and h.

[2pts ] A time series is weakly stationary if it has a mean, variance and autocovariances
that are finite and constant over time, E(Xt) = E(Xt+h) for all h, Var(Xt) =
Var(Xt+h) for all h, and Cov(Xt, Xt−h) = γ(h) for all t and all h.

[2pts ] An IID sequence of Cauchy random variables is strictly stationary since it
is IID. However, a Cauchy variable doesn’t have finite variance. Therefore, a
sequence of Cauchy random variables is not weakly stationary.

(b) (8 pts) Please rewrite the ARMA(2, 2) model in lag polynomial form φ(L)Xt =
θ(L)εt. Give an expression for the polynomials φ(L) and θ(L). Use the general weak
stationarity theorem to show that {Xt}t∈Z is weakly stationary if φ(L) is invertible.

Answer:

[2pts ] In lag polynomial notation, the ARMA(2,2) can be written as

(1− φ1L− φ2L
2)Xt = (1 + θ1L+ θ2L

2)εt

or
φ(L)Xt = θ(L)εt

[2pts ] Where φ(L) = 1− φ1L− φ2L
2 and θ(L) = 1 + θ1L+ θ2L

2.

[4pts ] If φ(L) is invertible, then we know that {Xt} can be written as a weighted
average of the white noise sequence {εt}

Xt = φ−1(L)θ(L)εt =
θ(L)

φ(L)
εt =

∞∑
j=0

ψjεt−j.

with absolutely summable coefficients
∑∞

j=0 |ψj| <∞. Finally, since the innova-
tions {εt} are white noise, they are also weakly stationary, and we can conclude
that {Xt} is weakly stationary by the general weak stationarity theorem.
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(c) (11pts) Suppose that |φ1| < 1, θ1 6= 0 and φ2 = θ2 = 0. Calculate the unconditional
mean and variance of {Xt}t∈Z. In other words, derive E(Xt) and Var(Xt).

Answer:

[2pts ] Given the parameter restrictions, we have an ARMA(1,1) model

Xt = φ1Xt−1 + εt + θ1εt−1

⇔ φ(L)Xt = θ(L)εt

Furthermore, since |φ1| < 1, the autoregressive lag polynomial is invertible, and
hence {Xt} is a weighted average of a white noise sequence

Xt = φ−1(L)θ(L)εt =
θ(L)

φ(L)
εt =

∞∑
j=0

ψjεt−j.

with absolutely summable coefficients
∑∞

j=0 |ψj| < ∞. Since the innovations
{εt} are white noise, they are also weakly stationary, and we conclude that {Xt}
is weakly stationary by the general weak stationarity theorem.

[4pts ] Therefore we can calculate the unconditional mean as follows

E(Xt) = E(φ1Xt−1 + θ1εt−1 + εt)

= φ1 E(Xt−1) + θ1 E(εt−1) + E(εt) (by linearity of expectation)

= φ1 E(Xt−1) (E(εt) = E(εt−1) = 0 because {εt} is white noise)

= φ1 E(Xt) (E(Xt) = E(Xt−1) because {Xt} is weakly stationary)

Finally, since |φ1| < 1, the mean can only be E(Xt) = 0.

[5pts ] The unconditional variance is given by

Var(Xt) = Var(φ1Xt−1 + θ1εt−1 + εt)

= φ2
1Var(Xt−1) + θ21 Var(εt−1) + Var(εt)

+ 2φ1θ1Cov(Xt−1, εt−1) + 2φ1Cov(Xt−1, εt)

We now note that:

(i) Var(Xt−1) = Var(Xt) because {Xt} is weakly stationary

(ii) Var(εt−1) = Var(εt) = σ2
ε because {εt} is white noise with variance σ2

ε

(iii) Cov(Xt−1, εt) = 0 because {Xt} is generated by an ARMA model with
invertible AR polynomial. This implies that Xt can be written as a weighted
average of past innovations Xt−1 =

∑∞
j=1 ψjεt−j. Hence

Cov(Xt−1, εt) = Cov(
∞∑
j=1

ψjεt−j, εt) =
∞∑
j=1

ψjCov(εt−j, εt) = 0.

All the covariances Cov(εt−j, εt) in the sum above are zero because {εt} is
white noise (and hence, the innovations are uncorrelated).
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(iv) Cov(Xt−1, εt−1) = σ2 because

Cov(Xt−1, εt−1) = Cov(φ1Xt−2 + θ1εt−2 + εt−1, εt−1)

(by definition of Xt−1)

= φ1Cov(Xt−2, εt−1) + θ1Cov(εt−2, εt−1) + Cov(εt−1, εt−1)

(Cov(εt−2, εt−1) = 0 by the same argument as in point (iii) above)

(Cov(εt−2, εt−1) = 0 because {εt} is white noise [uncorrelated])

= Var(εt−1) = σ2
ε .

(because Cov(εt−1, εt−1) = Var(εt−1) = σ2
ε )

Taking into account the points (i), (ii), (iii) and (iv) above, we can thus simplify
the expression for the variance of Xt as follows:

Var(Xt) = φ2
1Var(Xt) + (2φ1θ1 + θ21 + 1)σ2

ε .

Finally, solving for the variance yields,

Var(Xt) =
(2φ1θ1 + θ21 + 1)σ2

ε

(1− φ2
1)

.

(d) (10pts) Suppose now that φ1 6= 0 and φ2 6= 0 and θ1 = θ2 = 0. Additionally, assume
that the innovations {εt}t∈Z are independent and identically distributed (iid) Gaussian
random variables {εt}t∈Z ∼ NID(0, σ2

ε ). Produce the 2-step ahead forecast and the
variance of the 2-step ahead forecast error. Derive 95% confidence bounds for your
forecast.

Answer:

[3pts ] Given the parameter restrictions, we obtain an AR(2) model. The 2-step-ahead
forecast is given by

X̂T+2 = E(XT+2|X1, ..., XT )

= E(φ1XT+1 + φ2XT + εT+2|X1, ..., XT )

(by the AR(2) definition of XT+2)

= φ1E(XT+1|X1, ..., XT ) + φ2E(XT |X1, ..., XT ) + E(εT+2|X1, ..., XT )

(by linearity of expectation)

= φ1X̂T+1 + φ2XT + E(εT+2)

(because X̂T+1 = E(XT+1|X1, ..., XT ) by definition, XT is given, and εT+2 is

independent of X1, ..., XT since {Xt} is generated by an ARMA model)

= φ1X̂T+1 + φ2XT

(E(εT+2) = 0 since {εt} iid with mean zero)
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The 1-step-ahead forecast is given by

X̂T+1 = E(XT+1|X1, ..., XT )

= E(φ1XT + φ2XT−1 + εT+1|X1, ..., XT )

(by the AR(2) definition of XT+1)

= φ1E(XT |X1, ..., XT ) + φ2E(XT−1|X1, ..., XT ) + E(εT+1|X1, ..., XT )

(by linearity of expectation)

= φ1XT + φ2XT−1 + E(εT+1)

(because XT and XT−1 are known, and εT+1 is

independent of X1, ..., XT since {Xt} is generated by an ARMA model)

= φ1XT + φ2XT−1

(E(εT+1) = 0 since {εt} is iid with mean zero)

Hence 2-step-ahead forecast simplifies to

X̂T+2 = φ1X̂T+1 + φ2XT = (φ2
1 + φ2)XT + φ1φ2XT−1.

[3pts ] The 2-step-ahead forecast error is given by

eT+2 = XT+2 − X̂T+2

= φ1XT+1 + φ2XT + εT+2 − φ1X̂T+1 − φ2XT

= φ1XT+1 − φ1X̂T+1 + εT+2

= φ1(XT+1 − X̂T+1) + εT+2

The 1-step-ahead forecast error is given by

eT+1 = XT+1 − X̂T+1

= φ1XT + φ2XT−1 + εT+1 − φ1XT − φ2XT−1

= εT+1

Hence, we the 2-step-ahead forecast error simplifies to

eT+2 = φ1(XT+1 − X̂T+1) + εT+2 = φ1εT+1 + εT+2

[2pts ] The variance of the 2-step-ahead forecast is thus given by

Var(eT+2) = φ2
1Var(εT+1) + Var(εT+2) = (φ2

1 + 1)σ2
ε

because the innovations {εt} are independent with constant variance σ2
ε .

[2pts ] Finally, if the innovations are Gaussian, then the 95% confidence bounds are
then given by X̂T+2 ± 1.96

√
Var(eT+2), and can be written as

X̂T+2 ± 1.96
√

(φ2
1 + 1)σ2

ε .
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Question 2 [15 points] ML Estimation

Let {Xt}t∈Z be a time-series generated by a MA(1) process,

Xt = θ1εt−1 + εt , t ∈ Z ,

with independent and identical Gaussian innovations {εt}t∈Z ∼ NID(0, σ2
ε ) and σ2

ε > 0.
Note that this implies that εt has the following probability density function:

f(εt;σ
2
ε ) =

1√
2πσ2

ε

e−ε
2
t /2σ

2
ε , t ∈ Z

(a) (8pts) Give an expression of the log likelihood function for the unknown parameters
(θ1, σ

2
ε ) using the joint Gaussianity of the sample X1, ..., XT .

Answer:

[2pts ] If XT := (X1, ..., XT ) is jointly Gaussian, then the log likelihood for the vector
of parameters ψ := (θ1, σ

2
ε ) is given by,

ψ̂T = arg max
ψ
−T

2
log 2π − 1

2
log |Γ(ψ)| − 1

2
(X′TΓ−1(ψ)XT ).

[2pts ] Furthermore, the variance-covariance matrix Γ−1(ψ) is given by

Γ(ψ) =


γ(0) γ(1) γ(2) . . . γ(T )
γ(1) γ(0) γ(1) . . . γ(T − 1)
γ(2) γ(1) γ(0) . . . γ(T − 2)

...
...

...
. . .

...
γ(T ) γ(T − 1) γ(T − 2) . . . γ(0)

 .

[4pts ] where the variance is given by

γ(0) = Var(Xt) = Var(θ1εt−1 + εt)

(by MA(1) definition of Xt)

= θ1Var(εt−1) + Var(εt)

(because εt ⊥ εt−1 since {εt} ∼NID(0, σ2
ε ))

= θ1σ
2
ε + σ2

ε

(Var(εt) = σ2
ε ∀ t since {εt} ∼NID(0, σ2

ε ))

= (1 + θ21)σ
2
ε
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and the first-order autocovariance is given by

γ(1) = Cov(Xt, Xt−1) = Cov(θ1εt−1 + εt, θ1εt−2 + εt−1)

(by MA(1) definition of Xt and Xt−1)

= θ21Cov(εt−1, εt−2) + θ1Cov(εt−1, εt−1)

+ θ1Cov(εt, εt−2) + Cov(εt, εt−1)

(by linearity of the covariance)

= θ1Cov(εt−1, εt−1)

(Cov(εt, εs) = 0 ∀ t 6= s because {εt} ∼NID(0, σ2
ε ))

= θ1Var(εt−1)

(because Cov(εt−1, εt−1) = Varεt−1)

= θ1σ
2
ε .

(Var(εt−1) = σ2
ε since {εt} ∼NID(0, σ2

ε ))

Finally, for any lag h ≥ 2 we have

γ(h) = Cov(Xt, Xt−h) = Cov(θ1εt−1 + εt, θ1εt−h−1 + εt−h)

(by MA(1) definition of Xt and Xt−h)

= θ21Cov(εt−1, εt−h−1) + θ1Cov(εt−1, εt−h)

+ θ1Cov(εt, εt−h−1) + Cov(εt, εt−h)

(by linearity of the covariance)

= 0

(Cov(εt, εs) = 0 ∀ t 6= s as innovations {εt} are independent)

We thus have that

Γ(θ1, σ
2
ε ) =


(1 + θ21)σ

2
ε θ1σ

2
ε 0 . . . 0

θ1σ
2
ε (1 + θ21)σ

2
ε θ1σ

2
ε . . . 0

0 θ1σ
2
ε (1 + θ21)σ

2
ε . . . 0

...
...

...
. . .

...
0 0 0 . . . (1 + θ21)σ

2
ε

 .

(b) (7pts) Write down the conditional likelihood function using prediction error decom-
position starting at t = 2.

Answer:

[2pts ] First, we note that the sequence ε1, ..., εt is known conditional on observing
x1, ..., xt.

[2pts ] Hence, given our MA(1) model, we have

X2|X1 = X2|ε1 ∼ N(θ1ε1, σ
2
ε )

X3|X2, X1 = X3|ε2, ε1 ∼ N(θ1ε2, σ
2
ε )

and in general

Xt|Xt−1, Xt−2, ... = Xt|εt−1, εt−2, ... ∼ N(θ1εt−1, σ
2
ε )

7



[3pts ] Second, we note that the joint density of the data f(x1, ..., xT , θ1, σ
2
ε ) can be

factorized as a product of conditional densities (ignoring the first marginal)

f(x1, ..., xT ; θ, σ2) ≈
T∏
t=2

f(xt|xt−1, ..., x1; θ1, σ2)

=
T∏
t=2

f(xt|εt−1, ..., ε1; θ1, σ2)

=
T∏
t=2

1√
2πσ2

exp
[
− (xt − θ1εt−1)2

2σ2
ε

]
.
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Question 3 [15 points] Unit-Root Testing

Let {Xt}t∈Z be a time-series generated by an AR(2) process,

Xt = φ1Xt−1 + φ2Xt−2 + εt , t ∈ Z ,

where {εt}t∈Z ∼WN(0, σ2
ε ) with σ2

ε > 0 and consider the ADF regression,

∆Xt = βXt−1 − φ2∆Xt−1 + εt.

(a) (7pts) Re-write the AR(2) model in the ADF regression form. Show that testing
the hypothesis H0 : β = 0 is equivalent to testing for a unit root in the polynomial
φ(z) = 1− φ1z − φ2z

2.

Answer:

[4pts ] Re-writing the AR(2) in ADF form yields:

Xt = φ1Xt−1 + φ2Xt−2 + εt

⇔ Xt −Xt−1 = φ1Xt−1 −Xt−1 + φ2Xt−2 + εt

(subtracting Xt−1 on both sides)

⇔ ∆Xt = (φ1 − 1)Xt−1 + φ2Xt−2 + εt

(noting that Xt −Xt−1 = ∆Xt)

⇔ ∆Xt = (φ1 − 1)Xt−1 + φ2Xt−1 − φ2Xt−1 + φ2Xt−2 + εt

(adding and subtracting φ2Xt−1 on the right-hand-side)

⇔ ∆Xt = (φ1 + φ2 − 1)Xt−1 − φ2∆Xt−1 + εt

(noting that −φ2Xt−1 + φ2Xt−2 = −φ2∆Xt−1)

⇔ ∆Xt = βXt−1 − φ2∆Xt−1 + εt

(defining β = (φ1 + φ2 + 1))

[2pts ] A unit root occurs when φ(1) = 0. Since our polynomial φ(L) takes the form
φ(L) = 1− φ1L− φ2L

2, the unit root hypothesis states that

φ(1) = 1− φ1 × 1− φ2 × 1 = 1− φ1 − φ2 = 0

[1pts ] As a result, testing if φ(1) = 0 is equivalent to testing if 1−φ1−φ2 = 0, which,
in turn, is equivalent to testing if β = φ1 + φ2 − 1 = 0.

[8pts ] Why is it important to use a general-to-specific approach in the specification of the
ADF regression? Justify your answer. Answer:

[2pts ] The ADF test relies on the t-statistic β̂/SE(β̂) having a Dickey-Fuller distribu-
tion under the null hypothesis that β = 0. However, this t-statistic only has a
Dickey-Fuller distribution if the residuals of the ADF regression are white noise.
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[2pts ] When the ADF regression has too few lags, then the residuals will contain
autocorrelation. As a result, they will no longer be white noise and the t-statistic
will not have the correct distribution.

[2pts ] On the other hand, when too many lags are included, then estimation uncer-
tainty will be unnecessarily large, and the test results will be less reliable.

[2pts ] The idea of the general-to-specific approach is to first start with a large number
of lags in the ADF regression (enough lags to ensure that the residuals are white
noise), and then reduce the ADF regression to the smallest possible number of
lags for which the residuals are still white noise. By doing this, we ensure that
the t-statistic has the correct distribution and that the estimation uncertainty
is as small as possible.

Question 4 [35 points] ADL, Error Correction and Cointegration

Let {Yt}t∈Z be a time-series generated by an ADL(1, 1) process,

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt , t ∈ Z ,

where {εt}t∈Z is a sequence of iid white noise innovations with variance σ2
ε > 0.

(a) (8pts) Suppose |φ| < 1. Use the ADL(1,1) model to derive the short-run and long-run
multipliers and explain their meaning.

Answer:

[1pts ] Short-run multiplier is β0.

[2pts ] The short-run multiplier measures the expected change in Yt given a contem-
poraneous unit increase in Xt.

[3pts ] The long-run multiplier can be obtained by setting the innovations to zero,
εt = 0 ∀ t, fixing the time series {Xt} to some value X̄, and solving the ADL
equation for a fixed value Ȳ ,

Ȳ = α + φȲ + β0X̄ + β1X̄ + 0

⇔ Ȳ (1− φ) = α + (β0 + β1)X̄

⇔ Ȳ =
α

1− φ
+
β0 + β1
1− φ

X̄.

The long-run multiplier is β0+β1
1−φ .

[2pts ] The long-run multiplier measures expected long-run change in Yt given a per-
manent unit increase in Xt.
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(b) (12pts) Suppose that {Xt}t∈Z is generated by the following AR(2) model with inter-
cept

Xt = γ0 + γ1Xt−1 + γ2Xt−2 + ut , t ∈ Z ,

where {ut}t∈Z is a sequence of white noise iid innovations with variance σ2
u > 0.

Calculate the the impulse response function (IRF) of {Yt}t∈Z given the origin x for the
time-series {Xt}t∈Z, the origin y for the time-series {Yt}t∈Z, and a shock of magnitude
v in the innovation {ut}t∈Z at time t = s. In particular, give the IRF for t = s − 1,
t = s, t = s+ 1 and t = s+ 2.

Answer:

[2pts ] We have by definition

X̃s−1 = x Ỹs−1 = y

X̃s = x+ v Ỹs = y + β0(x+ v)

[5pts ] Furthermore, for periods s+ 1 and s+ 2, we have

X̃s+1 = E(Xs+1|X̃s, X̃s−1)

= E(γ0 + γ1Xs + γ2Xs−1 + εs+1|X̃s, X̃s−1)

(by definition of Xs+1)

= γ0 + γ1 E(Xs|X̃s, X̃s−1) + γ2 E(Xs−1|X̃s, X̃s−1) + E(εs+1|X̃s, X̃s−1)

(by linearity of the conditional expectation)

= γ0 + γ1X̃s + γ2X̃s−1 + E(εs+1|X̃s, X̃s−1)

(since X̃s and X̃s−1 are known)

= γ0 + γ1X̃s + γ2X̃s−1 + E(εs+1)

(since εs+1 is independent of past data Xs, Xs−1, ...

because {Xt} is generated by an ARMA model)

= γ0 + γ1X̃s + γ2X̃s−1

(E(εt) = 0 because {εt} is white noise)

= γ0 + γ1(x+ v) + γ2x
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X̃s+2 = E(Xs+2|X̃s, X̃s−1)

= E(γ0 + γ1Xs+1 + γ2Xs + εs+2|X̃s, X̃s−1)

(by definition of Xs+2)

= γ0 + γ1 E(Xs+1|X̃s, X̃s−1) + γ2X̃s + E(εs+2|X̃s, X̃s−1)

(by linearity of the conditional expectation, and because X̃s is given)

= γ0 + γ1 E(Xs+1|X̃s, X̃s−1) + γ2X̃s + E(εs+2)

(since εs+2 is independent of past data Xs, Xs−1, ...

because {Xt} is generated by an ARMA model)

= γ0 + γ1 E(Xs+1|X̃s, X̃s−1) + γ2X̃s

(E(εt) = 0 because {εt} is white noise)

= (1 + γ1)γ0 + (γ21 + γ2)X̃s + γ1γ2X̃s−1

(using the expression for X̃s+1 = E(Xs+1|X̃s, X̃s−1) derived above)

= (1 + γ1)γ0 + (γ21 + γ2)(x+ v) + γ1γ2x

(using the fact that X̃s−1 = x)

[5pts ] For convenience, define D̃s = (Ỹs, Ỹs−1, X̃s, X̃s−1). Then we finally have,

Ỹs+1 = E(Ys+1|D̃s) = E(α + φYs + β0Xs+1 + β1Xs + εs+1|D̃s)

(by definition of Ys+1)

= α + φE(Ys|D̃s) + β0E(Xs+1|D̃s) + β1E(Xs|D̃s) + E(εs+1|D̃s)

(by linearity of the conditional expectation)

= α + φE(Ys|D̃s) + β0E(Xs+1|D̃s) + β1E(Xs|D̃s)

(E(εs+1|D̃s) = E(εs+1) = 0 because {εs} is white noise and

{Yt} is generated by an ADL with exogenous regressor {Xt},

hence εs+1 is independent of D̃s)

= α + φỸs + β0X̃s+1 + β1X̃s

(since Xs = X̃s is known and Ỹs and X̃s+1 were derived above)

= α + φ(y + β0(x+ v)) + β0(γ0 + γ1X̃s + γ2X̃s−1) + β1X̃s

(using the expressions of Ỹs = E(Ys|D̃s) and X̃s+1 = E(Xs+1|X̃s, X̃s−1) derived above)

= α + φ(y + β0(x+ v)) + β0(γ0 + γ1(x+ v) + γ2x) + β1(x+ v)

(since X̃s = x+ v and X̃s−1 = x)
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Ỹs+2 = E(Ys+2|D̃s) = E(α + φYs+1 + β0Xs+2 + β1Xs+1 + εs+2|D̃s)

(by definition of Ys+2)

= α + φE(Ys+1|D̃s) + β0E(Xs+2|D̃s) + β1E(Xs+1|D̃s) + E(εs+2|D̃s)

(by linearity of the conditional expectation)

= α + φE(Ys+1|D̃s) + β0E(Xs+2|D̃s) + β1E(Xs+1|D̃s)

(E(εs+2|D̃s) = E(εs+2) = 0 because {εs} is white noise and

{Yt} is generated by an ADL with exogenous regressor {Xt},

hence εs+2 is independent of D̃s)

= α + φỸs+1 + β0X̃s+2 + β1X̃s+1

(the final result would be obtained by substituting in the expressions

for Ỹs+1, X̃s+2 and X̃s+1 derived above)

(c) (15pts) Let {Yt}t∈Z and {Xt}t∈Z be I(1) time series. Suppose that you have obtained
the following estimates for the parameters of the ADL(1,1) model above:

Parameter α φ β0 β1 σ2
ε

Estimate 0.11 0.94 1.28 0.01 1.14

Furthermore, suppose that the p-values you obtained indicate that all parameters are
significantly different from zero at the 5% significance level. Does {Xt}t∈Z Granger
cause {Yt}t∈Z? Can {Yt}t∈Z Granger cause {Xt}t∈Z? Are {Yt}t∈Z and {Xt}t∈Z cointe-
grated? Justify your answers carefully and in detail.

Answer:

[2pts ] A time-series {Xt}t∈Z causes a time-series {Yt}t∈Z if past values of {Xt}t∈Z
provide statistically significant information about future values of {Yt}t∈Z.

[2pts ] If the estimation results and the p-values reported in the table are reliable (for
example, if the residuals seem to be white noise), then, at the 5% significance
level we could conclude that β1 is significantly different from zero, and hence
{Xt}t∈Z Granger causes {Yt}t∈Z.

[2pts ] Note however that the answer depends on the adopted significance level. At
more stringent significance levels we might conclude that β1 is not significantly
different from zero anymore and thus that {Xt}t∈Z does not Granger cause
{Yt}t∈Z.

[2pts ] Yes, {Yt}t∈Z can Granger cause {Xt}t∈Z. It is possible that past values of {Yt}t∈Z
provide statistically significant information about future values of {Xt}t∈Z, re-
gardless of the reverse.
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[3pts ] We can rewrite the ADL in an error correction form.

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt

⇔ ∆Yt = α + (φ− 1)Yt−1 + β0∆Xt + (β0 + β1)Xt−1

⇔ ∆Yt = −(1− φ)

(
Yt−1 −

α

1− φ
− β0 + β1

1− φ
Xt−1

)
+ β0∆Xt

[2pts ] Therefore, if |φ| < 1, then −2 < −(1 − φ) < 0. If the estimation results pre-
sented in the table are reliable, then the point estimate of 0.94 for φ suggests (by
Granger’s representation theorem) that {Yt}t∈Z and {Xt}t∈Z are indeed cointe-
grated.

[2pts ] Note however that we should test for cointegration using an appropriate test.
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