
Faculty of Exact Sciences exam Introduction to Programming (Java)

Vrije Universiteit December 17th, 2018 time: 2:45 hours

Problem 1.

a) Let the classes A, B and C be

class A {

 int g;

 A (int g) {

 this.g = g;

 }

 void add (int x) {

 g += x;

 }

 }

 class B {

 int g;

 A a;

 B (int g) {

 this.g = g;

 this.a = new A(11);

 }

 void add (int x) {

 g += x;

}

 }

 class C {

 int g;

 B b;

 C (int g) {

 this.g = g;

 b = new B(13);

 }

 }

Further we have a program with the following statements/declarations

 A a = new A(1);

 B b = new B(2);

 C c = new C(3);

 PrintStream out = new PrintStream(System.out);

 void println (A x, B y) {

 out.printf("%d %d\n", x.g, y.g);

 }

 void doSomething () {

 println(a, b);

 b.a.add(4);

 println(a, b);

 c.b.add(5);

 println(c.b.a, b);

 b = c.b;

 a = b.a;

 println(a, b);

 c.b.a.add(6);

 println(a, c.b);

 b = c.b;

 println(c.b.a, b);

 }

What will be printed when the method doSomething() is called?

 b) The following heading of a method calculate()is given

 double calculate (double x, int n)

 This method calculates the first n terms of the series

 1!/2x^3 – 2!/3x^4 + 3!/4x^5 – 4!/5x^6 + 5!/6x^7 -

x^n is the notation for "x to the power n" and n! is the notation for

"the factorial of n". The number of terms that should be calculated is

given by numberOfTerms. Implement this method. Do this without using

any methods from the class Math. Assume: numberOfTerms≥1.

 c) Give the declaration of a variable "matrix" with as type a 2-dimensional

 array of char's with 8 rows and 4 columns. Use constants when necessary.

Program a method numberOfTops() that will be able, for any 2-dimensional

array of int's, to count how many tops there are in the array. An int x

in the array is a top if x is bigger than each of the 4 numbers above,

below, to the left and to the right of x

 examples

 1 3 2 5 the only top is 9 1 9 1 1 no tops here

 7 9 4 1 (9 is a top; it is bigger 9 1 1 1

 3 5 6 9 than 3, 5, 7 and 4) 1 1 9 1

d) class Problem_1d {

 PrintStream out;

 int a, b;

 Problem_1d() {

 out = new PrintStream(System.out);

 a = 5;

 b = 6;

 }

 void print (int x, int y) {

 out.printf("%d %d\n", x, y);

 }

 int m1 (int c) {

 a = c + 1;

 b = a + 2;

 c = a + b;

 print(c, a);

 return c;

 }

 int m2 (int b, int c) {

 a = b – c;

 b = m1(a);

 print(c, b);

 c += 1;

 return b+c;

 }

 void start() {

 print (a, b);

 int c = m1(b);

 print(a, b);

 b = m2(c, a);

 print(a, b);

 }

 public static void main(String argv[]) {

 new Problem_1d().start();

 }

 }

What will be printed when this program is executed?

Problem 2.

For every subproblem of problem 2, program sub problems in separate methods in

the correct class. Use constants when necessary.

a) Given is the following class:

 class Coin {

 String country,

 grade; // mint state, fine, good, fair or poor

 int printedValue,

 yearMinted;

 }

 The constructor and the methods are omitted, as they are not

necessary for this problem.

Make a class CoinCollection. This class should be able to store a

maximum of 2500 coins. Further the class should have a default

constructor and a method add(). The default constructor should

initialize the CoinCollection-object to an empty coin collection.

The method add() should make it possible to add 1 coin to the coin

collection.

b) Program in the class CoinCollection a method

 CoinCollection rareCoins ()

 which, in a new CoinCollection-object, returns all the coins that

are rare. For this problem it is defined that a coin is rare if its

grade is "mint state" and its printed value is more than 10.

c) Program in the class CoinCollection a method

 void removeModernCoins ()

 which removes all modern coins from the Coin Collection. For this

problem it is defined that a coin is modern if the year it was

minted is after 1945.

d) Given is that the class CoinCollection contains a method

 int coinsFrom (String origin)

 that returns the total number of coins in the coin collection from

the country origin. You can use this method without having to

program it.

Now add to the class CoinCollection a method

 int rareOldCoinsFrom (String origin)

 which returns the total number of rare coins in the coin collection

that are not modern coins and that are from the country origin.

Program this method without using a for-, while or do-while

statement.

Problem 3.

a) Write a recursive method

int count (int[] r, int i, int a) // 0 <= i <= r.length

that counts how many elements in r, starting from index postion i,

equal a

 examples: assume the array r contains {1, 2, 3, 1, 2, 3, 1, 2, 1}

 count(r, 0, 1) gives 4

 count(r, 2, 1) gives 3

 count(r, 4, 1) gives 2

 count(r, 9, 1) gives 0

b) Given is that the class String contains a method

String substring (int start) // 0<=start<=length string

 that returns the substring from the character on index position

 start till the last character (inclusive). The class String

also contains a method

 String substring (int start, int stop)

 // 0<=start<=length string, stop <= length string

examples: "abcdef".substring(3) returns "def"

 "abcdef".substring(3, 5) returns "de"

 "abcdef".substring(0) returns "abcdef"

 "abcdef".substring(0, 3) returns "abc"

 "abcdef".substring(6) returns ""

 "abcdef".substring(3, 0) returns ""

Write a recursive solution for the method

 int count (String s, String pattern) // pattern length > 0

that counts the number of occurrences of the pattern in s.

 examples: count("abcabcabc", "ab") gives 3

 count("aaaa", "a") gives 4

 count("aaaa", "aa") gives 3

 count("aaaa", "aaaa") gives 1

 count("abcd", "ba") gives 0

grade:

 Problem a b c d total

 1. 5 5 5 5 20

 2. 2 6 6 3 17

 3. 4 4 8

 -- +

 45

 The grade E follows from the points P with the formula: E = P / 5 + 1

