Midterm Exam VU Amsterdam

X₄01105: Group Theory 28 March 2023 (8:30-10:30)

Please justify your answers! Even a correct answer without full explanation scores badly.

The use of books, lecture notes, calculators, etc. is not allowed.

Question 1. Determine the element in $\mathbb{Z}/3723\mathbb{Z}$ that maps to $(\overline{2},\overline{3})$ in $\mathbb{Z}/51\mathbb{Z} \times \mathbb{Z}/73\mathbb{Z}$ under the bijection in the Chinese remainder theorem.

Question 2. Consider the symmetric group S_{11} .

- (a) Find $k \in \mathbb{N}$ such that $k \cdot 7!$ is the number of elements of order 8 in S_{11} .
- (b) Let $\sigma = (19873)(259348)(137)(15)(5976)$. Write σ^{94} as a disjoint product of non-trivial cycles in S_{11} .

Question 3. Let G be a group. Prove that the map $\varphi: G \to G$ given by $\varphi(x) = x^{-1}$ (where x^{-1} is the inverse of x) is a group homomorphism if and only if G is abelian.

Question 4. It is given that $G = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} : xz > 0, x, y, z \in \mathbb{R}, \right\}$ and $H = \left\{ \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix} : t > 0 \right\}$ are groups under matrix multiplication.

- (a) Prove the map $H \times G \to G$ given by $(h, x) \to h \cdot x := hx$ is a group action of H on G.
- (b) Determine the stabiliser H_{τ} of the element $\tau = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ for this action.
- (c) Determine the kernel of the action given in part (a).

Question 5. Consider the dihedral group $D_8 = \langle r, s \mid r^4 = s^2 = 1, sr = r^{-1}s \rangle$ and the general linear group $\operatorname{GL}_2(\mathbb{R})$ of invertible 2×2 matrices with real coefficients. Prove that the map $\varphi: D_8 \to \operatorname{GL}_2(\mathbb{R})$ given on the generators by $\varphi(s) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\varphi(r) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ extends to a group homomorphism by verifying the relations are preserved.

Question 6. Suppose that G is a group and H_i is a subgroup of G for all $i \in \mathbb{N}$.

- (a) Prove that $H = \bigcap_{i \in \mathbb{N}} H_i$ is a subgroup of G.
- (b) If H_1 is cyclic, prove that H is cyclic.

 Maximum score per subitem

 1: 10
 2a: 8
 3: 10
 4a: 8
 5: 10
 6a: 12

 2b: 8
 4b: 7
 6b: 10

 $\begin{aligned} \text{Maximum Total} &= 90 \\ \text{Mark} &= 1 + (\text{Total}/10) \end{aligned}$