Group theory exam 27-3-2018: Solutions

- (1) We note that 10 = 61 51 and $51 = 5 \cdot 10 + 1$, so $1 = 1 \cdot 51 5 \cdot (61 51) = 6 \cdot 51 + (-5) \cdot 61$. So the class is $3 \cdot (-5) \cdot 61 + 10 \cdot 6 \cdot 51 = -915 + 3060 = 2145$.
- (2) (a) The order of a product of pairwise disjoint cycles is the least common multiple of the lengths of those cycles. So here there must be a 4-cycle and apart from that only cycles of lengths 1, 2 or 4. In S_7 this gives only a 4-cycle, or a 4-cycle and a 2-cycle. The number of 4-cycles is $\binom{7}{4}\frac{4!}{4}=7\cdot 6\cdot 5=210$, the number of combinations 4-cycle 2-cycle is $210\cdot\binom{3}{2}\frac{2!}{2}=630$, so in total there are 840 such elements.
 - (b) (143)(27)(56)
- (3) (a) $e = r^{2 \cdot 0}$ is in H. We check that for x and y in B, also xy^{-1} is in B. With i and j in \mathbb{Z} : $r^{2i}(r^{2j})^{-1} = r^{2(i-j)}, \ sr^{2i+1}(r^{2j})^{-1} = sr^{2(i-j)+1}, \ r^{2i}(sr^{2j+1})^{-1} = r^{2i}sr^{2j+1} = sr^{2(j-i)+1}, \ sr^{2i+1}(sr^{2j+1})^{-1} = sr^{2i+1}sr^{2j+1} = r^{2(j-i)} \ \text{are in } B.$
 - (b) No: r^2 and sr are in H, but $r^2 \cdot sr = sr^{-2}r = sr^7 \neq sr \cdot r^2 = sr^3$.
- (4) (a) For $n \geq 1$ we have $\varphi(g^n) = \varphi(g \dots g) = \varphi(g) \dots \varphi(g) = \varphi(g)^n$. φ is injective, so $g^n = e_G$ if and only if $\varphi(g^n) = e_H$, and by the previous sentence this is equivalent with $\varphi(g)^n = e_H$. So the smallest $n \geq 1$ with $g^n = e_G$ equals the smallest $n \geq 1$ with $\varphi(g)^n = e_H$.
 - (b) Let s and t be in H, so $s = \varphi(x)$ and $t = \varphi(y)$ for (unique) x and y in G. Then $\varphi^{-1}(st) = \varphi^{-1}(\varphi(x)\varphi(y)) = \varphi^{-1}(\varphi(xy)) = xy = \varphi^{-1}(s)\varphi^{-1}(t)$ because φ is a homomorphism.

(5) (a) (i)
$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} a^2 & (a+1)b \\ 0 & 1 \end{pmatrix}$$
. If $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^m = \begin{pmatrix} a^m & (a^{m-1} + a^{m-2} + \dots + 1)b \\ 0 & 1 \end{pmatrix}$ for $m \ge 2$, then

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{m+1} = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^m \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a^m & (a^{m-1} + a^{m-2} + \dots + 1)b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a^{m+1} & a^m \\ 0 & 1 \end{pmatrix} b + (a^{m-1} + a^{m-2} + \dots + 1)b = \begin{pmatrix} a^{m+1} & (a^m + a^{m-1} + \dots + 1)b \\ 0 & 1 \end{pmatrix} ,$$

so
$$\begin{pmatrix} a & b^m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a^m & (a^{m-1} + a^{m-2} + \dots + 1)b \\ 0 & 1 \end{pmatrix}$$
 for all $m \ge 2$.

- (ii) $e_G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so if $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ has finite order n then $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If $a^m = 1$ for a in \mathbb{Q}^* and some $m \ge 1$, then $a = \pm 1$, so we have two cases.
 - $a^n = 1$ for a in \mathbb{Q}^* and some $m \ge 1$, then $a = \pm 1$, so we have two cases. • $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & nb \\ 0 & 1 \end{pmatrix}$, so for $n \ge 1$ this can be $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ only if b = 0. This gives the element $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, of order 1.
 - $\begin{pmatrix} -1 & b \\ 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} (-1)^2 & (-1+1)b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and as $\begin{pmatrix} -1 & b \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, these elements have order 2.
- these elements have order 2.

 (b) Take $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ in G and $\begin{pmatrix} -1 & B \\ 0 & 1 \end{pmatrix}$ in A, so B is in \mathbb{Z} . Then $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & B \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -a & aB+b \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & B \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -a & B-b \\ 0 & 1 \end{pmatrix}$. So $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ is in $C_G(A)$ if and only if aB+b=B-b for all B in \mathbb{Z} . Taking B=0 shows b=0. Taking

B=1 shows a=1. So the only possible element in $C_G(A)$ is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and this one satisfies the requirement, hence $C_G(A) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.

(c) Take
$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$
 in $N_G(A)$ and $\begin{pmatrix} -1 & B \\ 0 & 1 \end{pmatrix}$ in A , so B is in \mathbb{Z} . Then

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & B \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -a & aB+b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & -a^{-1}b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & aB+2b \\ 0 & 1 \end{pmatrix}.$$

With B in \mathbb{Z} this has to give all elements of A.

- Taking B = 0 shows 2b is in \mathbb{Z} .
- Say 2b = m. Then $\{aB + m | B \in \mathbb{Z}\} = \{aB | B \in \mathbb{Z}\}$ must be \mathbb{Z} , so $a = \pm 1$: taking B = 1 shows a is in \mathbb{Z} , and for $a \in \mathbb{Z} \setminus \{\pm 1\}$ we do not get \mathbb{Z} . So $N_G(A) = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \text{ with } a = \pm 1 \text{ and } b \in \left\{ \frac{m}{2} | m \in \mathbb{Z} \right\} \right\}.$
- (6) $\mathbb{Z}/100\mathbb{Z} \simeq \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/25\mathbb{Z}$, so we compute $\overline{27^{2018}}$ in $\mathbb{Z}/4\mathbb{Z}$ and in $\mathbb{Z}/25\mathbb{Z}$. $\overline{27^{2018}} = \overline{27}^{2018} = \overline{3}^{2018} = (\overline{3}^2)^{1009} = (\overline{1})^{1009} = \overline{1}$ in $\mathbb{Z}/4\mathbb{Z}$.

 - As lcm(25,27) = 1, $\overline{27} = \overline{2}$ is in $(\mathbb{Z}/25\mathbb{Z})^*$. By Euler's theorem $\overline{2}^{20} = \overline{1}$: $\varphi(25) = \underline{5 \cdot (5-1)} = 20$. So $\overline{27^{2018}} = \overline{27^{2018}} = \overline{2}^{2018} = \overline{2}^{-2}$. But $\overline{2} \cdot \overline{13} = \overline{1}$, so $(\overline{2})^{-2} = \overline{13}^2 =$ $\overline{169} = \overline{19}$.

Therefore $\overline{27^{2018}}$ maps to $(\overline{1},\overline{19})$, which is the image of $\overline{69}$. So $\overline{27^{2018}} = \overline{69}$, hence the last two digits of 27^{2018} are 69.