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Question 1 [35 points] Observation-Driven Models: Stochastic Properties

Consider the following ARCH(2) model:

yt = σtεt , {εt}t∈Z ∼ NID(0, 1)

where σ2
t = ω + α1y

2
t−1 + α2y

2
t−2 for t ∈ Z,

where ω > 0, α1 ≥ 0, α2 ≥ 0 and α1 + α2 < 1.

(a) Show that yt has unconditional mean zero; i.e. show that E(yt) = 0.

(b) Derive the unconditional variance of yt; i.e. derive an expression for Var(yt) in terms
of the parameters ω, α1 and α2.

(c) Suppose that the following for loop is used in MATLAB to simulate data from the
ARCH(2) model:

s i g (1 ) = omega/(1−alpha1−alpha2 ) ;

f o r t =2:T

y ( t ) = s q r t ( s i g ( t ) ) ∗ e p s i l o n ( t ) ;
s i g ( t+1) = omega + alpha1∗y ( t )ˆ2 + alpha2∗y ( t−1)ˆ2;

end

Consider the following statement: “the for loop should start at t=1 because we have
specified the initial value sig(1) ”. Is the statement true or false? Justify your answer.

Consider the following updating equations for the conditional variances and conditional
covariance between a bivariate vector yyyt = (y1,t, y2,t)

> of stock returns:[
σ2

1,t σ21,t

σ21,t σ2
2,t

]
=
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]
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[
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0.5 2

]
�

[
y2

1,t−1 y1,t−1y2,t−1

y1,t−1y2,t−1 y2
2,t−1

]
Suppose that the last observed returns for stocks 1 and 2 were given by y1t−1 = 1 and
y2t−1 = 0. Additionally, consider three different portfolios which assign different weights
k1 and k2 to stocks 1 and 2 respectively:

Portfolio A: consists only of stock 1 (k1 = 1, k2 = 0)

Portfolio B: consists only of stock 2 (k1 = 0, k2 = 1)

Portfolio C: gives the same weight to each stock (k1 = 0.5, k2 = 0.5)

(d) Which portfolio has lower risk? i.e. which portfolio has lower conditional variance?

(e) Suppose further that µ1,t = E(y1,t|Y t−1) = 1 and µ2,t = E(y2,t|Y t−1) = 2. Calculate
the Sharpe ratio of each portfolio.

(f) Consider the following statement: “Portfolio A is the best because it has the lowest
Sharpe ratio”. Is the statement true or false? Justify your answer.
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Solution to question 1:

(a) The unconditional mean E(yt) can be obtained as follows

E(yt) = E(σtεt) = E(σt)E(εt) = E(σt)× 0 = 0,

where the first equality is satisfied since yt is generated by an ARCH model, the
second equality is valid since εt is independent of σt and the third equality follows
because E(εt) = 0, which is implied by the assumption that εt ∼ N(0, 1).

(b) The unconditional variance of yt is obtained by noting that

Var(yt) = E(y2
t ) = E(σ2

t ε
2
t ) = E(σ2

t )E(ε2
t ) = E(σ2

t )

where the first equality follows from yt having mean zero, the second equality is
obtained from the observation equation of the ARCH model that generates yt, the
third equality follows from the independence of σt and εt and the fourth equality
follows from the fact that the variance of εt is equal to 1 by assumption. Now using
the updating equation, we have that

E(σ2
t ) = ω + α1E(y2

t−1) + α2E(y2
t−2).

Furthermore, using the fact that E(y2
t ) = E(σ2

t ), shown above, we conclude that

E(y2
t ) = ω + α1E(y2

t−1) + α2E(y2
t−2).

The final step is to recognize that the condition α1 + α2 < 1 ensures that {yt} is
weakly stationary, and hence we can set E(y2

t ) = E(y2
t−1) = E(y2

t−2), which implies
that

E(y2
t ) = ω + α1E(y2

t ) + α2E(y2
t ).

Solving for E(y2
t ) yields the desired result

E(y2
t ) = ω/(1− α1 − α2).

(c) The for loop cannot start at t = 1 because the vector the updating equation in the
loop contains an element y(t-1). If the for loop is set to start at t = 1, then the for
loop will call for y(0) which is invalid since the first element of a vector in MATLAB
is indexed by 1, i.e. it is called using y(1). Calling y(0) results in an error.

(d) First we note that the portfolio returns are obtained as a linear combination of the
returns of the two stocks y1,t and y2,t,

yp,t = k1y1,t + k2y2,t.

Next, we note that conditional variance of the portfolio Var(yp,t|Y t−1) is given by

Var(yp,t|Y t−1) = k2
1Var(y1,t|Y t−1) + k2

2Var(y2,t|Y t−1) + 2k1k2Cov(y1,t, y2,t|Y t−1).

Using the notation of the updating equation, we have,

σ2
p,t = k2

1σ
2
1,t + k2

2σ
2
2,t + 2k1k2σ12,t.
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Since y1,t−1 = 1 and y2,t−1 = 0, we obtain from the updating equation that

σ2
1,t = 1 + 1× y1,t−1 = 2 ,

σ2
2,t = 1 + 2× y2,t−1 = 1 ,

and σ12,t = 0.

We thus conclude that portfolios A,B and C, have the following conditional variance

Portfolio A: σ2
p,t = σ2

1,t = 2.

Portfolio B: σ2
p,t = σ2

2,t = 1.

Portfolio C: σ2
p,t = 0.25σ2

1,t + 0.25σ2
2,t + 0.5σ12,t = 0.75.

Therefore the portfolio with lower risk is Portfolio C.

(e) In general, the Sharpe Ratio Sp,t is given by the ratio of the conditional expectation
and the square root of the conditional variance deviation of portfolio returns. The
conditional variance of the portfolios were derived in the previous question. Since
E(y1,t|Y t−1) = 1 and E(y2,t|Y t−1) = 2, the conditional expectation the portfolio is
naturally given by

E(yt,p) = k1E(y1,t) + k2E(y2,t) = k1 + 2k2.

The expected returns of portfolios A, B and C, are thus given by

Portfolio A: µp,t = 1× 1 + 2× 0 = 1.

Portfolio B: µp,t = 0× 1 + 2× 1 = 2.

Portfolio C: µp,t = 0.5× 1 + 0.5× 2 = 1.5.

We thus conclude that the Sharpe ratio of each portfolio is given by

Portfolio A: Sp,t = µp,t
σp,t

= µ1,t
σ1,t

= 1√
2
≈ 0.71.

Portfolio B: Sp,t = µp,t
σp,t

= µ2,t
σ2,t

= 2√
1

= 2.

Portfolio C: Sp,t = µp,t
σp,t

= 0.5µ1,t+0.5µ2,t
σp,t

= 1.5√
0.75
≈ 1.73.

(f) The statement is incorrect because we prefer portfolios with large returns and low
risk (variance). Therefore the best portfolio is the one with largest Sharpe Ratio.
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Question 2 [25 points] Observation-Driven Models: Parameter Estimation

Consider the following GARCH(1,1) model:

yt = σtεt , {εt}t∈Z ∼ NID(0, 1)

where σ2
t = ω + α1y

2
t−1 + β1σ

2
t−1 for t ∈ Z.

(a) Consider the following MATLAB code that sets the initial value of the parameter vec-
tor θ = (ω, α1, β1) which is used with the FMINCON optimization package for obtaining
estimates of parameters of the GARCH(1,1) model:

t h e t a i n i = [ 0 , 0 , 0 ]

Consider the following statement: “Setting the initial value of the parameter θ =
(0, 0, 0) is problematic”. Is the statement true or false? Justify your answer.

(b) You have estimated several competing GARCH(p,q) model specifications and obtained
the following results for the log likelihood, the Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC):

Model Log Likelihood AIC BIC
GARCH(1,1) -4781.3 9558.6 9573.4
GARCH(1,2) -4787.5 9583.0 9589.4
GARCH(2,1) -4699.1 9406.2 9412.6
GARCH(2,2) -4698.7 9407.4 9415.4

Are the following statements true or false? Please justify your answer.

(i) “The GARCH(2,2) is the best model because it has the largest log likelihood
value.”

(ii) “The GARCH(1,2) is the best model because it has the largest AIC and BIC
values.”

(iii) “If the GARCH(2,1) model is better than the GARCH(1,1) model in terms of
both AIC and BIC, then this means that the GARCH(2,1) model is well speci-
fied.”
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Solution to question 2:

(a) The statement is correct. Setting the initial value to (0,0,0) is problematic because,
according to the GARCH updating equation, in this way the conditional variance σ2

t

that enters the log-likelihood is equal to zero

σ2
t = 0 + 0× y2

t−1 + 0× σ2
t−1 = 0 for every t.

Therefore the log-likelihood will not exist at the initial value since the terms log(0)
and y2

t /0 are not defined.

(b) (i) The statement is false. The log-likelihood should not be used as a criterion to
compare the performance of different models. This is because a larger model that
nests another smaller model has always a larger log-likelihood, even if the smaller
model gives a correct description of the data. For example, a GARCH(2,2)
will always have larger log-likelihood than an GARCH(1,1) model, even if the
GARCH(1,1) model provides a correct description of the data. Therefore we
would always choose models with more parameters and overfit the data. We
should instead use information criteria like the AIC and the BIC that penalize
models with more parameters.

(ii) The statement is false. The AIC and BIC information criteria are inversely
related to the model’s fit (log likelihood) and positively related to the model’s
number of parameters. In general we prefer parsimonious models (i.e. models
with few parameters) with good fit (i.e. large log likelihood) Hence, we should
select models with low values of AIC and BIC. The best model is thus the
GARCH(2,1).

(iii) The statement is false. Both the GARCH(2,1) and the GARCH(1,1) may be
misspecified. When a model is better than another in AIC and BIC, this means
simply that it fits the data better, even after penalizing for the difference in the
number of parameters. The AIC and BIC do not tell us however if any of the
models under comparison are well specified or misspecified. Questions about
GARCH model specification should be answered using specification tests like
testing for autocorrelation in residuals or testing for normality of the residuals.
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Question 3 [20 points] Parameter-Driven Models: Stochastic Properties

(a) Explain and discuss the main differences in the estimation of parameters between
Generalized Autoregressive Conditional Heteroeskedasticity (GARCH) models and
Stochastic Volatility (SV) models?

(b) Let {yt}t∈Z be generated by the following SV-MA(2) model

yt = σtεt, σ2
t = exp(ft),

ft = ηt + φηt−2,

where {εt}t∈Z is NID(0, 1) and {ηt}t∈Z is NID(0, σ2
η) with σ2

η > 0.

Recall that if zt is a normal random variable zt ∼ N(µ, σ2), then exp(zt) has a log-
normal distribution, which is denoted exp(zt) ∼ log-N(µ, σ2), and furthermore, has
mean given by

E(zt) = exp(µ+ σ2/2).

(i) Show that the first-order autocorrelation function of y2
t is equal to zero, i.e. show

that Corr(y2
t , y

2
t−1) = 0.

(ii) Show that the skewness of yt is zero, i.e. show that E(y3
t ) = 0.

(iii) Is the unconditional distribution of yt Normal if φ = 0? Justify your answer.
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Solution to question 3:

(a) GARCH and SV models are have different updating equations. GARCH models are
observation-driven models, and hence, conditional on the past Y t−1, the conditional
volatility σ2

t is a given constant. This means that the conditional distribution of yt
given the past is easily tractable. In particular, we have that

yt|Y t−1 ∼ N(0, σ2
t )

and hence, we can factorize the joint density of the data as follows

p(y1, ..., yT ; θ) =
T∏
t=2

p(yt|Y t−1)

where

p(yt|Y t−1) =
1√

2πσ2
t

exp

(
− y2

t

2σ2
t

)
.

The log-likelihood function of a GARCH model is thus analytically tractable and we
can optimize it numerically. We can thus easily obtain maximum likelihood estimates
for the parameters of a GARCH model.

In contrast, SV models are parameter-driven models, and this means that the con-
ditional volatility σ2

t is not a constant, even conditional on the past Y t−1. This fact
renders the conditional distribution yt|Y t−1 analytically intractable. As a result, we
cannot simply write down the log likelihood function and attempt to maximize it
numerically. Instead, the parameters of the SV model can be estimated using simula-
tion based methods like indirect inference. Rather than maximizing the log likelihood
function, the indirect inference estimator attempts to find the parameter values that
make data simulated from the SV model as similar as possible to observed data, as
judged by a vector of auxiliary statistics that are used to describe both observed and
simulated data.

(b) (i) The correlation between y2
t and y2

t−1 is zero because y2
t and y2

t−1 are independent
and thus uncorrelated. This can be noted as

y2
t = exp(ηt + φηt−2)ε2t and

y2
t−1 = exp(ηt−1 + φηt−3)ε2t−1.

By the model’s assumptions ηt, ηt−2 and εt are all independent of ηt−1, ηt−3 and
εt−1 and therefore y2

t is independent of y2
t−1.

(ii) The desired result is obtained by noting that

E(y3
t ) = E(σ3

t ε
3
t ) = E(σ3

t )E(ε3t ) = E(σ3
t )× 0 = 0,

where the first equality follows from the observation equation of the SV model
that generates yt, the second equality follows from the independence between εt
and σt and the third equality follows from the fact that εt ∼ N(0, 1) and the
skewness of the normal distribution is zero.
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(iii) No, the unconditional distribution of the SV model is not normal. This can be
shown by noting that the kurtosis of the unconditional distribution is not equal
to 3, as it should be for a normal random variable. In particular, when φ = 0,
the model becomes

yt = σtεt, σ2
t = exp(ft),

ft = ηt.

Therefore the kurtosis ku = E(y4
t )/E(y2

t )
2 of yt can be obtained as follows. First,

we obtain that

E(y4
t ) = E(σ4

t ε
4
t ) = E(σ4

t )E(ε4t ) = 3E[exp(2ft)] = 3 exp(2σ2
η),

where the first equality follows from the observation equation opf the SV model
that generates yt. The second equality follows by independence of σ4

t and ε4t .
The third equality follows from the fact that εt is normally distributed and
hence E(ε4t ) = 3 and because σ2

t = exp(ft) which implies that σ4 = (σ2)2 =
(exp(ft))

2 = exp(2ft). The last equality follows from the fact that 2ft = 2ηt ∼
N(0, 4σ2

η) and therefore σ4
t = exp(2ft) ∼ log-N(0, 4σ2

η). Second, we obtain that

E(y2
t ) = E(σ2

t ε
2
t ) = E(σ2

t )E(ε2t ) = E[exp(ft)] = exp(σ2
η/2),

where the first equality is implied by the observation equation of the SV model,
the second equality follows from the independence of σ2

t and ε2t , the third equality
follows from the fact that εt ∼ N(0, 1) and hence E(ε2t ) = Var(εt) = 1, and
the last equality follows from the fact that ft = ηt ∼ N(0, σ2

η) and therefore
exp(ft) ∼ log-N(0, σ2

η). Finally, we get that

ku =
E(y4

t )

E(y2
t )

2
=

3 exp(2σ2
η)

exp(σ2
η)

= 3 exp(σ2
η).

Therefore, the kurtosis is bigger than 3 as long as σ2
η > 0. We conclude that yt

is not normally distributed.
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Question 4 [20 points] Parameter-Driven Models: Parameter Estimation

(a) Consider the indirect inference estimator θ̂HT given by

θ̂HT = arg min
θ∈Θ

d(B̂T , B̃H(θ)),

where B̂T is the auxiliary statistic obtained from the observed sample of data (which
is of length T ) and B̃H(θ) is the auxiliary statistic obtained from the simulated sample
of data (which is of length H).

Consider the following statement: “the accuracy of the indirect inference estimator
θ̂HT increases as the length H of the simulations increases”. Is the statement true or
false? Justify your answer.

(b) Consider the following SV-MA(1) model

yt = σtεt, σ2
t = exp(ft),

ft = ηt + φηt−1,

where {εt}t∈Z is NID(0, 1) and {ηt}t∈Z is NID(0, 1). The parameter vector is given
by θ = φ and the parameter set is Θ = (−1, 1).

We want to estimate the “true” parameter θ0 = φ0 ∈ (−1, 1) by indirect inference.
Consider the following auxiliary statistics

B̂T =
1

T

T∑
t=2

ytyt−1, and B̃H(θ) =
1

H

H∑
t=2

ỹt(θ)ỹt−1(θ)

Show whether or not the indirect inference estimator θ̂HT based on the above auxiliary
statistics is consistent.
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Solution to question 4:

(a) The statement is correct. The variance of the indirect inference estimator decreases
as H increases. This is due to the fact that when H is large there is less uncertainty
in the auxiliary statistics B̃H(θ) obtained from the simulated data. Therefore, the
indirect inference estimator is less exposed to the sample variability of B̃H(θ) and
thus it is more accurate.

(b) To show the consistency of the indirect inference estimator we first need to find the
binding functions B(θ) and B(θ0). Then, we have to show that the true parameter
θ = θ0 is the unique minimizer of d(B(θ), B(θ0)) in the parameter space Θ. In this
case θ = φ and Θ = (−1, 1).

By the Law of Large Numbers we obtain that

B̂T = T−1

T∑
t=2

ytyt−1
p−→ B(θ0) = E(ytyt−1) = 0,

where

E(ytyt−1) = E(σtσt−1εtεt−1) = E(σtσt−1)E(εt)E(εt−1) = E(σtσt−1)× 0× 0 = 0.

In a similar way, for the statistics from the simulated data {ỹh(θ)}Hh=1, we obtain that

B̃H(θ) = H−1

H∑
h=2

ỹh(θ)ỹh−1(θ)
p−→ B(θ) = E(yh(θ)ỹh−1(θ)) = 0.

Therefore we conclude that the indirect inference estimator is inconsistent because
d(B(θ), B(θ0)) = d(0, 0) = 0 for any θ ∈ Θ.
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