Exam Evolutionary Computing 11.01.2011

NOTES:

- 1. YOUR NAME MUST BE WRITTEN ON EACH SHEET IN CAPITALS.
- 2. You can answer the questions in English or in Dutch.
- 3. This is an 'open book' exam. You can use the course book but nothing else.
- 4. Points to be collected: 90, free gift: 10 points, maximum total: 100 points.
- 5. Grade: total number of points divided by 10.

QUESTIONS

- 1. We are to solve a graph 3-coloring problem with evolutionary computing. That is, we have a graph G = (N, E) with n = |N| nodes and m = |E| edges and three colors $\{r, w, b\}$. We define a coloring as an assignment of colors to all nodes. Then the task is to find a coloring such that no neighboring nodes have the same color.
 - (2p) What kind of problem is this, an FOP, a COP, or a CSP?
- 2. We decide to represent a coloring by a vector $x = \langle x_1, \ldots, x_n \rangle \in \{r, w, b\}^n$, where the k-th position belongs to node $k \in N$ and x_k is the color of k. Constraints are denoted as $\{c_1, \ldots, c_m\}$. For each edge $e = (k, l) \in E$ there is a unique constraint c_i such that $c_i(x) = true$ if and only if $x_k \neq x_l$. Furthermore, we use the notation C^k for the set of constraints involving variable x_k (that is, involving the node k). Now we can define two different fitness functions as follows:

$$f_1(x) = \sum_{i=1}^m A(x, c_i)$$
 where

$$A(x,c_i) = \left\{ egin{array}{ll} 1 & ext{if } c_i(x) = false ext{ (i.e., } x ext{ violates } c_i) \ 0 & ext{otherwise} \end{array}
ight.$$

and

$$f_2(x) = \sum_{j=1}^n B(x, C^j)$$
 where

$$B(x,C^j) = \left\{ \begin{array}{ll} 1 & \text{if } x \text{ violates at least one } c \in C^j \\ 0 & \text{otherwise} \end{array} \right.$$

- (a) (5p) What does the fitness function f_1 measure in terms of the (colored) graph?
- (b) (5p) What does the fitness function f_2 measure in terms of the (colored) graph?
- (c) (6p) Which of these fitness functions is preferable if we want to use a heuristic mutation operator that 'fixes' some errors in a given chromosomes? Give arguments why.

- 3. Using the above representation and either fitness functions specify an EA suitable for solving the above problem. In particular, give
 - (a) (3p) an appropriate crossover operator,
 - (b) (3p) an appropriate mutation operator,
 - (c) (3p) an appropriate selection mechanism,
 - (d) (2p) an initialization method,
 - (e) (2p) a stop condition,
- 4. Invent a multi-parent recombination mechanism for permutation representation, such that it is not just a concatenation of a number of two-parent recombination operators. That is, describe a recombination mechanism that can be applied to an arbitrary number of n>1 parents and has the property that if all parents are permutations (over the same alphabet) then so are the offspring. You can solve this problem in two steps:
 - (a) (7p) Describe a recombination mechanism that can be applied to n=3 parents and permutations over the alphabet $\{a,b,c,d,e,f\}$. Illustrate its working with a concrete example.
 - (b) (10p) Describe a recombination mechanism for permutations that can be applied to an arbitrary number of n > 1 parents and provide an argument to "prove" that it always produces correct offspring. NB. The quotes in "prove" indicate that you needn't provide a formal proof with mathematical rigor.
- 5. (a) (3p) Explain what deterministic, adaptive, and self-adaptive parameter control mean in evolutionary computing.
 - (b) (5p) Invent a deterministic mechanism to modify the tournament size of a GA over time. Motivate your method by (intuitive) arguments: why would it be helpful?
 - (c) (5p) Invent an adaptive mechanism to modify the tournament size of a GA over time. Motivate your method by (intuitive) arguments: why would it be helpful?
 - (d) (7p) Invent a self-adaptive mechanism to modify the tournament size of a GA over time. Motivate your method by (intuitive) arguments: why would it be helpful?
- 6. (8p) What is the difference between uniform crossover and global discrete recombination?
- 7. (8p) Is edge recombination applicable for any problem represented by permutations? Or can it only be used for TSP-like problems?
- 8. (6p) Consider the following statement:

Evolution Strategies do not suffer from bloat, because they are self-adapting the mutation stepsize.

Is this statement correct or not? Give arguments.

¹The EA does not have to be "smart" (efficient). But the representation and the operators should be such that a solution can be found.