Exam Evolutionary Computing 06.02.2007

NOTES:

- 1. Your name must be written on each sheet in CAPITALS.
- 2. You can answer the questions in English or in Dutch.
- 3. Points to be collected: 90, free gift: 10 points, maximum total: 100 points.
- 4. Grade: total number of points divided by 10, rounded up.

QUESTIONS

- 1. We are to solve an industrial optimization problem with evolutionary computing. Interviews with the domain experts reveal that the problem has 50 parameters x_1, \ldots, x_{50} :
 - 10 real valued parmeters, x_1, \ldots, x_{10} , all between 0 and 1;
 - 38 integer valued parmeters, x_{11}, \ldots, x_{48} , all between 0 and 511;
 - 2 Boolean parmeters, $x_{49}, x_{50} \in \{0, 1\}.$

The objective function F to be maximized does not have an analytical form (i.e., no mathematical formula describing it). Rather, for each vector x_1, \ldots, x_{50} , the objective function value can be calculated by a problem specific simulator that returns $F(x_1, \ldots, x_{50})$ for the input x_1, \ldots, x_{50} . Your task is to define an EA suitable¹ for solving this problem. In particular, specify

- (a) (5p) what "dialect" of EAs to use for this problem and why, (EP, ES, GA, GP?)
- (b) (5p) a representation (the syntax of the chromosomes and a mapping between chromosomes and the original parameter vector x_1, \ldots, x_{50} ,
- (c) (5p) an appropriate crossover operator,
- (d) (5p) an appropriate mutation operator,
- (e) (3p) an appropriate selection mechanism,
- (f) (3p) an initialization method,
- (g) (3p) a stop condition.
- 2. Self-adaptation is standard (i.e., "always" used) in one of the branches of evolutionary computing.
 - (a) (2p) Which branch is this?
 - (b) (2p) Which parameter is self-adapted?.
 - (c) (6p) Explain in detail how this parameter is self-adapted.

¹The EA does not have to be "smart" (efficient). But the representation and the operators should be such that a solution can be found.

- 3. (a) (3p) Explain what order-based representation is.
 - (b) (3p) Sketch a problem that can be well treated by order-based representation.
 - (c) (5p) Give the description of an order-based crossover operator.
 - (d) (3p) Give the description of an order-based mutation operator.
- 4. Let us assume that we have a population of four individuals $S = \{a, b, c, d\}$ with fitness values given by f(x) as shown in the following table (to be maximized).

x	f(x)	$\mathbb{P}_f(x)$	g(x)	$\mathbb{P}_g(x)$
a	1			
b	1			
c	2			
d	4			

- (a) (10p) What are the probabilities $P_f(x)$ for each $x \in S$ to be selected by fitness proportional (roulette wheel) selection, based on this fitness function f?
- (b) (10p) Let g be another fitness function, obtained as g = f + 100. What are the probabilities $\text{IP}_g(x)$ for each $x \in S$ to be selected by fitness proportional (roulette wheel) selection, based on this fitness function g?
 - NB. You may give approximate figures of these probabilities without decimals, e.g., "around 75 %".
- 5. (a) (3p) What is a memetic algorithm?.
 - (b) (3p) Name 3 components of an evolutionary algorithm that can be hybridized.
 - (c) (6p) Give an example of a hybrid EA: specify what problem is solved by the EA, specify what component is hybridized, specify the heuristic used for this.
- 6. (5p) Consider the following statement:
 - 'A (1+1) Evolution Strategy is not a real evolutionary algorithm.'

Is this statement correct or not? Give arguments.