Econometrics III: Example Exam

Problem 1 (25/60 points)

Suppose a model for an industrial sector's profit growth (y_1) and investment growth (y_2) is given by the bivariate vector autoregressive (VAR) process for $\mathbf{y}_t = (y_{1t}, y_{2t})'$:

$$\mathbf{y}_{t} = \begin{pmatrix} 0.2 \\ 0.1 \end{pmatrix} + \begin{pmatrix} 0.8 & 0.2 \\ 0 & 0.5 \end{pmatrix} \mathbf{y}_{t-1} + \mathbf{u}_{t}, \quad t = 0, \pm 1, \pm 2, \dots$$
 (1)

The innovations $\mathbf{u}_t = (u_{1t}, u_{2t})'$ are assumed to be generated by an uncorrelated Gaussian process with mean zero and fixed, nonsingular covariance matrix,

$$\Sigma_{\mathbf{u}} = \left(\begin{array}{cc} 0.3 & 0 \\ 0 & 0.6 \end{array} \right).$$

- (a) (4 points) Show that the process (1) is stable.
- (b) (4 points) Compute the unconditional mean of y_{1t} (profit growth).
- (c) (3 points) Does profit growth Granger-cause investment growth? Does investment growth Granger-cause profit growth? Justify briefly.
- (d) (4 points) Compute the impulse responses of the VAR given in (1) for horizons h = 0, 1, 2. Given a unit shock to profit growth in t = 0, what effect on investment growth do you expect as $h \to \infty$?
- (e) (2 points) If you wanted to consider orthogonalized impulse responses, would they be different from the ones you computed in (d)? Why or why not?
- (f) (8 points) Suppose that at time T, the observed values $\mathbf{y}_T = (y_{T1}, y_{T2})'$ are (0.4, 0)'.
 - (i) Compute the 1-step and the 2-step-ahead predictions $\mathbf{y}_T(1)$ and $\mathbf{y}_T(2)$.
 - (ii) Compute the forecast error variance matrix for the 2-step ahead prediction of \mathbf{y}_t .
 - (iii) Compute a 95% prediction interval for the 2-step ahead prediction of y_1 (profit growth).

Problem 2 (20/60 points)

Suppose you want to analyze a time series data set on three exchange rate series y_1 , y_2 and y_3 . Unit root tests have shown that all three time series are I(1).

- (a) (8 points) Economic theory suggests that two equilibrium relationships exist between the three variables, implying that $y_1 0.3y_2$ is stationary and $y_1 2y_3$ is stationary.
 - (i) Set up a zero-mean vector-error correction model without lagged differences for the vector $\mathbf{y}_t = (y_{1t}, y_{2t}, y_{3t})'$, incorporating the information from economic theory. Give the dimensions of all model components.
 - (ii) A common normalization for the cointegration matrix is $\beta' = (I_r : \tilde{\beta}'_{K-r})$, where r is the number of cointegration relations, I_r is the identity matrix of dimension r, and K is the number of variables in the system.
 - $\widetilde{\beta}_{K-r}$ is a $((K-r) \times r)$ matrix of coefficients. Rewrite the VECM you set up in part (i) in terms of this normalization. *Hint: Consider the ordering of the variables*.

(b) (8 points) Suppose you believe the economic theory regarding β , but you want to estimate the loading matrix α of your VECM in part (a). Suppose T observations plus a suitable number of pre-sample observations of \mathbf{y}_t are available. Define

$$\begin{split} \Delta \mathbf{Y} &= (\Delta \mathbf{y}_1 : \dots : \Delta \mathbf{y}_T), \\ \mathbf{Y}_{-1} &= (\mathbf{y}_0 : \dots : \mathbf{y}_{T-1}), \\ \mathbf{U} &= (\mathbf{u}_1 : \dots : \mathbf{u}_T) \end{split}$$

Write down the model in matrix notation. Show that the least squares estimator for the loading matrix α can be expressed as

$$\widehat{\alpha} = \Delta \mathbf{Y} \mathbf{Y}'_{-1} \beta (\beta' \mathbf{Y}_{-1} \mathbf{Y}'_{-1} \beta)^{-1}$$
(2)

(c) (4 points) Suppose the number of cointegration relations for the three variables is unknown and you want to find out about it using a test. State an suitable test sequence by mentioning the test type, null-and alternative hypotheses and the decision rule(s).

Problem 3 (15/60 points)

Consider the one-way error component panel data model for a sample on N individuals at T time points in matrix notation:

$$y = X\beta + G\mu + e \quad e|X \sim N(0, \sigma_e^2 I_{NT})$$
(3)

where

- $\beta = (\beta_1, ..., \beta_K)'$ is a vector of unknown fixed coefficients,
- μ is a $(N \times 1)$ -vector of unknown fixed individual-specific intercepts,
- X is a $(NT \times K)$ -matrix of strictly exogenous random regressors,
- y and e are $(NT \times 1)$ -vectors of dependent variable observations and disturbances, respectively,
- $G = I_N \otimes \mathbb{I}_T$ is a matrix of individual dummies. \mathbb{I}_T denotes a $(T \times 1)$ -vector of ones and I_N denotes the identity matrix of dimension N.
- (a) (7 points) Define the matrices $P_G := G(G'G)^{-1}G'$ and $M_G := I_{NT} P_G$. Transform model (3) by pre-multiplying both sides of the equation by M_G . What are the properties of the transformed data vector $M_G y$ and the transformed regressor matrix $M_G X$? Do you consider the OLS estimator in this transformed model a good choice to estimate the unknown parameter vector β ? Explain briefly.
- (b) (8 points) Derive the conditional expectation and the conditional covariance matrix of the within estimator

$$\widehat{\beta}_W = (X'M_GX)^{-1}X'M_Gy,\tag{4}$$

where M_G is given in part (a), conditional on the regressor matrix X.

Appendix

Rules for Kronecker product and vectorization (vec) operator

Assume that the matrices A, B, C, and I (identity matrix) have dimensions such that all products exist.

(K1)
$$(A \otimes B)' = A' \otimes B'$$

(K2)
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

(K3)
$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$

(K4)
$$\operatorname{vec}(ABC) = (C' \otimes A)\operatorname{vec}(B)$$

$$(K4*) \operatorname{vec}(AB) = (I \otimes A)\operatorname{vec}(B) = (B' \otimes I)\operatorname{vec}(A)$$

(K5)
$$\operatorname{vec}(B')'\operatorname{vec}(A) = \operatorname{vec}(A')'\operatorname{vec}(B) = \operatorname{tr}(BA) = \operatorname{tr}(AB)$$

(K6)
$$tr(ABC) = vec(A')'(I \otimes B)vec(C)$$