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Solution Ectr. III Exam

Solution to problem 1

(a) Reverse characteristic polynomial:

det(IK − A1z) = det
(

1− (1 + ρ)z 0
−κz 1− δz

)
= [1− (1 + ρ)z] · (1− δz)− 0

Setting the two factors to zero gives roots

1− (1 + ρ)z = 0 ⇔ z1 = 1
1 + ρ

1− δz = 0 ⇔ z2 = 1
δ

For stability, we need |z1| > 1 and |z2| > 1. This is guaranteed if −2 < ρ < 0 and |δ| < 1.

(b) Mean:

µ = (IK − A1)−1c =
((

1 0
0 1

)
−
(

1 + ρ 0
κ δ

))−1(
−ρ

1− δ − κ

)

Compute inverse:(
−ρ 0
−κ 1− δ

)−1

= 1
−ρ(1− δ)

(
1− δ 0
κ −ρ

)
=
(

−1
ρ 0
κ

−ρ(1−δ)
1

1−δ

)

Therefore,

µ =
(

−1
ρ 0
κ

−ρ(1−δ)
1

1−δ

)(
−ρ

1− δ − κ

)
=
(

1
− κ
ρ(1−δ) · (−ρ) + 1−δ−κ

1−δ

)
=
(

1
1

)

(c) Inflation Granger-causes unemployment if κ 6= 0. Unemployment does not Granger-cause
inflation, because a12 = 0.
These results do not change if δ = 0. δ = 0 only means that the model for unemployment
does not contain an autoregressive term.

(d) The impulse responses are contained in the moving average coefficient matrices Φi. Since we
have a V AR(1) model, Φi = Ai

1:

Φ0 = I2

Φ1 = A1 =
(

1 + ρ 0
κ δ

)

Φ2 = A2
1 =

(
(1 + ρ)2 0

κ(1 + ρ) + δκ δ2

)

The response pattern does not change if we consider orthogonal impulse responses, because
the shocks in the model are contemporaneously uncorrelated (Σu is diagonal).
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(e) (i)

yT+1|T =
(

0
0

)
+
(

1 + ρ 0
κ δ

)(
0
γ

)
=
(

0
δγ

)

yT+2|T =
(

1 + ρ 0
κ δ

)(
0
δγ

)
=
(

0
δ2γ

)

(ii)

Σy(2) =
2−1∑
i=0

ΦiΣuΦ′i

= Σu + A1ΣuA′1

=
(
σ2

1 0
0 σ2

2

)
+
(

1 + ρ 0
κ δ

)(
σ2

1 0
0 σ2

2

)(
1 + ρ κ

0 δ2

)

=
(
σ2

1 0
0 σ2

2

)
+
(

(1 + ρ)2σ2
1 (1 + ρ)κσ2

1
(1 + ρ)κσ2

1 κ2σ2
1 + δ2σ2

2

)

Therefore,
σ2
unemployment(2) = κ2σ2

1 + (1 + δ2)σ2
2.

(iii) Forecast interval:
yT ± z0.975 · σ2

unemployment

where z0.975 is the 0.975-quantile from the standard normal distribution. Plugging in,
we get

δ2γ ± 1.96 ·
√
κ2σ2

1 + (1 + δ)σ2
2

Solution to problem 2

(a)

∆yt = yt − yt−1 = (A1 − IK)yt−1 + A2yt−2 + ut
= −(IK − A1)yt−1 + A2yt−1 − A2yt−1 + A2yt−2 + ut
= −(IK − A1 − A2)︸ ︷︷ ︸

Π

yt−1−A2︸ ︷︷ ︸
Γ1

(yt−1 − yt−2)︸ ︷︷ ︸
∆yt−1

+ut

= Πyt−1 + Γ1∆yt−1 + ut

(b) rank(Π) = 0 implies Π = 0, as the zero matrix is the only matrix of rank zero. Therefore,
using the matrices defined in the problem, we get

∆Y = Γ1∆X + U

(c)

vec(∆Y) = vec(Γ1∆X) + vec(U)
= (∆X′ ⊗ IK)vec(Γ1) + vec(U)
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Use OLS formula ”β̂ = (X ′X)−1X ′y” with X = (∆X′ ⊗ IK) β = vec(Γ1) and y =
vec(∆Y), and re-arrange using the Kronecker and vec calculation rules:

vec(Γ̂1) =
(
(∆X′ ⊗ IT )′(∆X′ ⊗ IT )

)−1 (∆X′ ⊗ IT )′vec(∆Y)
= (∆X∆X′ ⊗ IT )−1(∆X⊗ IT )vec(∆Y)
=

[
(∆X∆X′)−1∆X⊗ IT

]
vec(∆Y)

= vec
(
∆Y∆X′(∆X∆X′)−1

)
.

Dropping the vec operator gives

Γ̂1 = ∆Y∆X′(∆X∆X′)−1

Or, simpler, start with the standard multivariate OLS equation Y = XB+U, then the estimator
is

B̂ = YX′(XX′)−1.

Recognising that the equation ∆Y = Γ1∆X + U is of the same format, one can immediately
find the estimator in this case.

(d) Reformulate the estimator in terms of the true parameter:

Γ̂1 = ∆Y∆X′(∆X∆X′)−1

= (Γ1∆X + U)∆X′(∆X∆X′)−1

= Γ1 + U∆X′(∆X∆X′)−1

Showing consistency means showing that the difference between the true parameter and its
estimator converges to zero in probability, as T → ∞. Let plim

T→∞
denote the operator for

convergence in probability, as T →∞.

plim
T→∞

(Γ̂1 − Γ1) = plim
T→∞

(
U∆X′(∆X∆X′)−1

)
= T

T
plim
T→∞

(U∆X′) · plim
T→∞

(∆X∆X′)−1

= plim
T→∞

(
U∆X′

T

)
︸ ︷︷ ︸

(∗)

plim
T→∞

(
∆X∆X′

T

)−1

︸ ︷︷ ︸
=Φ−1, by WLLN

To show that (∗) converges to zero in probability, show convergence in mean square and use
that mean square convergence implies convergence in probability.

U∆X′

T
m.s.→ 0 if and only if E

[
U∆X′

T

]
→ 0 and V

[
U∆X′

T

]
→ 0 as T →∞

We use the vectorized form of (∗): Mean:

E
[

U∆X′

T

]
= 1√

T
E
[ 1√

T
vec(U∆X′)

]
= 0, ∀t, (1)
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according to (CLT).
Variance:

V
[

U∆X′

T

]
= 1
T

V
[ 1√

T
vec(U∆X′)

]
As T →∞, V

[
1√
T

vec(U∆X′)
]
→ Φ−1⊗Σu, according to (CLT). Therefore 1

T V
[

1√
T

vec(U∆X′)
]
→

0, i.e. the variance vanishes.
Since we have shown that the estimator converges in mean square to the true parameter, we
may conclude that is also converges in probability, i.e., that it is consistent.

Solution to problem 3

(a) Least squares objective function: minimize

V (Λ, Ft) = 1
T

T∑
t=1

(Xt − ΛFt)′(Xt − ΛFt) (2)

with respect to Ft and Λ.

(b) In (2), both Λ and Ft are unknown, and can therefore not be identified without further re-
strictions. An example restriction is Λ′Λ = Ir. The number of linear restrictions needed for
identification is r2, or, if you notice that by definition this restriction is symmetric, the number
of restrictions is 1

2r(r + 1).

Solution to problem 4

(a) (i) Covariance matrix of disturbances:

ε ∼ (0,Ω) , where

Ω := V (ε) = V(Gµ)︸ ︷︷ ︸
=Gσ2

µING′

+V(e)

= σ2
µGG

′ + σ2
e INT

= σ2
µ(IN ⊗ JT ) + σ2

e(IN ⊗ IT )

Note that IN ⊗ JT = T · PG; write IT = 1
T JT + (IT − 1

T JT )

Ω = Tσ2
µPG + σ2

e [IN ⊗ ( 1
T
JT + (IT −

1
T
JT ))]

= Tσ2
µPG + σ2

e [IN ⊗
1
T
JT︸ ︷︷ ︸

=PG

+ IN ⊗ (IT −
1
T
JT )︸ ︷︷ ︸

=MG

]

= (Tσ2
µ + σ2

e)︸ ︷︷ ︸
=:σ2

1

PG + σ2
eMG = σ2

1PG + σ2
eMG , (3)

(ii) PG and MG are symmetric and idempotent, and σ2
e and σ2

µ are the unique eigenvalues
of Ω. Writing the covariance in this form allows us to invert it easily.
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(b) Premultiplying the model with M0 = I − P0, where P0 = 1lNT (1l ′NT 1lNT )−11l ′NT removes the
intercept from the model.

M0y = αM01lNT︸ ︷︷ ︸
=0

+M0Xβ +M0e (4)

Running OLS on the transformed data gives an efficient estimator of β:

β̂ = (X ′M0X)−1X ′M0y (5)
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