Ectr. III Example Exam 1: Solution

Solution to problem 1

(a) Companion form:

$$\mathbf{Y}_{t} = \begin{pmatrix} \mathbf{y}_{t} \\ \mathbf{y}_{t-1} \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.15 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0.5 & 0.1 & 0 & 0 \\ 0 & 0.4 & 0 & 0.1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \mathbf{Y}_{t-1} + \begin{pmatrix} \mathbf{u}_{t} \\ 0 \end{pmatrix}$$
(1)

with
$$\begin{pmatrix} \mathbf{u}_t \\ 0 \end{pmatrix} \sim N \begin{pmatrix} \Sigma_{\mathbf{u}} & 0 \\ 0 & 0 \end{pmatrix}$$
.

To check stability, check whether all eigenvalues of A are smaller than 1 in modulus.

(b) Unconditional mean:

$$\mathbb{E}[\mathbf{y}_t] = (\mathbf{I}_2 - \mathbf{A}_1 - \mathbf{A}_2)^{-1} \cdot \mathbf{c}$$
 (2)

$$= \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.5 & 0.1 \\ 0 & 0.4 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 0.1 \end{pmatrix} \right)^{-1} \begin{pmatrix} 0.1 \\ 0.15 \end{pmatrix}$$
(3)

$$= \frac{1}{0.25} \begin{pmatrix} 0.5 & 0.1 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.15 \end{pmatrix} = \begin{pmatrix} 0.26 \\ 0.3 \end{pmatrix} \tag{4}$$

(c) Consumer price inflation (y_1) does not Granger-cause producer price inflation (y_2) , because $a_{21,1} = a_{21,2} = 0.$

Producer price inflation (y_2) Granger-causes consumer price inflation (y_1) , because $a_{12,1} =$

(d)
$$\Phi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\Phi_1 = A_1 = \begin{pmatrix} 0.5 & 0.1 \\ 0 & 0.4 \end{pmatrix}$.

(e) (i)

$$\begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} = \begin{pmatrix} \ell_{11} & 0 \\ \ell_{21} & \ell_{22} \end{pmatrix} \begin{pmatrix} \ell_{11} & \ell_{21} \\ 0 & \ell_{22} \end{pmatrix}$$
 (5)

Solving the system of equations

$$\ell_{11}^2 = 1 \qquad \Leftrightarrow \qquad \ell_{11} = 1 \tag{6}$$

$$\ell_{11} \cdot \ell_{21} = 0.1 \quad \Leftrightarrow \quad \ell_{21} = 0.1$$
 (7)

$$\ell_{11}^2 = 1 \quad \Leftrightarrow \quad \ell_{11} = 1 \tag{6}$$

$$\ell_{11} \cdot \ell_{21} = 0.1 \quad \Leftrightarrow \quad \ell_{21} = 0.1 \tag{7}$$

$$\ell_{21}^2 + \ell_{22}^2 = 1 \quad \Leftrightarrow \quad \ell_{22} = \sqrt{1 - 0.1^2} \approx 0.995 \tag{8}$$

(ii)
$$\Theta_0 = \Phi_0 L = L$$
 and
$$\Theta_1 = \Phi_1 L = \begin{pmatrix} 0.5 & 0.1 \\ 0 & 0.4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0.1 & 0.995 \end{pmatrix} = \begin{pmatrix} 0.51 & 0.0995 \\ 0.04 & 0.3980 \end{pmatrix}$$

(iii) "Ordinary" impulse responses contain the impacts of unit shocks to the variables in the system. Orthogonal impulse responses contain the impacts of shocks to a transformed model in which the shocks have are contemporaneously uncorrelated.

(f) (i)

$$\mathbf{y}_{T}(2) = \begin{pmatrix} 0.1\\0.15 \end{pmatrix} + \begin{pmatrix} 0.5 & 0.1\\0 & 0.4 \end{pmatrix} \begin{pmatrix} 0.04\\0.1 \end{pmatrix} + \begin{pmatrix} 0 & 0\\0 & 0.1 \end{pmatrix} \begin{pmatrix} 0.11\\0.2 \end{pmatrix} = \begin{pmatrix} 0.13\\0.21 \end{pmatrix} \tag{9}$$

(ii)

$$MSE[\mathbf{y}_{T}(2)] = \sum_{i=0}^{1} \Phi_{i} \Sigma_{\mathbf{u}} \Phi_{i}' = \Sigma_{\mathbf{u}} + \Phi_{1} \Sigma_{\mathbf{u}} \Phi_{1}' = \begin{pmatrix} 1 & 0.1 \\ 0.1 & 1 \end{pmatrix} + \begin{pmatrix} 1.31 & 0.64 \\ 0.64 & 1.16 \end{pmatrix} = \begin{pmatrix} 2.31 & 0.74 \\ 0.74 & 2.16 \end{pmatrix}$$
(10)

Forecast error variance of the 2-step ahead prediction of consumer price inflation is 2.31.

Solution to problem 2

(a)

$$\mathbf{y}_{t} - \mathbf{y}_{t-1} = \mathbf{c} + \Pi \mathbf{y}_{t-1} + \Gamma_{1}(\mathbf{y}_{t-1} - \mathbf{y}_{t-2}) + \Gamma_{2}(\mathbf{y}_{t-2} - \mathbf{y}_{t-3}) + \mathbf{u}_{t}$$
(11)
$$\mathbf{y}_{t} = \mathbf{c} + \underbrace{(I_{K} + \Pi + \Gamma_{1})}_{\mathbf{A}_{1}} \mathbf{y}_{t-1} + \underbrace{(\Gamma_{2} - \Gamma_{1})}_{\mathbf{A}_{2}} \mathbf{y}_{t-2} + \underbrace{(-\Gamma_{2})}_{\mathbf{A}_{3}} \mathbf{y}_{t-3} + \mathbf{u}_{t}$$
(12)

$$\Delta \mathbf{Y} = \mathbf{B}\mathbf{X} + \mathbf{U} \tag{13}$$

where

$$\begin{aligned} \mathbf{Y}_{(K\times T)} &= (\mathbf{y}_1,...,\mathbf{y}_T), \quad \mathbf{X}_t = (1,\mathbf{y}_1',\Delta\mathbf{y}_t',\Delta\mathbf{y}_{t-1}')', \quad \mathbf{X}_{((1+3K)\times T)} = (\mathbf{X}_0,...,\mathbf{X}_{T-1}), \\ \mathbf{B}_{(K\times (1+3K))} &= (\mathbf{c}:\Pi:\Gamma_1:\Gamma_2), \quad \mathbf{U}_{(K\times T)} = (\mathbf{u}_1,...,\mathbf{u}_T) \end{aligned}$$

Three pre-sample observations are needed: \mathbf{y}_0 , \mathbf{y}_{-1} , and \mathbf{y}_{-2} .

- (c) $\hat{B} = \Delta \mathbf{Y} \mathbf{X}' (\mathbf{X} \mathbf{X}')^{-1}$
- (d) (3 points) Simplified model:

$$\Delta \mathbf{y}_t = c + \Gamma_1 \Delta \mathbf{y}_{t-1} + \Gamma_2 \Delta \mathbf{y}_{t-2} + \mathbf{u}_t \tag{14}$$

(4 points) Needed: WLLN for regressors $\Delta \mathbf{X} = (\Delta \mathbf{X}_0, ..., \Delta \mathbf{X}_{T-1})$ with $\Delta \mathbf{X}_t = (1, \Delta \mathbf{y}_t', \Delta \mathbf{y}_{t-1}')'$:

$$\lim_{T \to \infty} \frac{1}{T} \Delta \mathbf{X} \Delta \mathbf{X}' = \Omega, \tag{15}$$

where Ω is fixed finite and positive definite matrix.

Solution to problem 3

(a)

$$X_{t} = \mathbf{\Lambda}F_{t} + \epsilon_{t}$$

$$= \underbrace{(\Lambda_{1} \quad \Lambda_{2})}_{\mathbf{\Lambda}} \underbrace{\begin{pmatrix} f_{t} \\ f_{t-1} \end{pmatrix}}_{F_{t}} + \epsilon_{t},$$

with $\epsilon_t \sim i.i.d.N(0, \Sigma_{\epsilon})$

(b)

$$F_{t} = \begin{pmatrix} f_{t} \\ f_{t-1} \end{pmatrix} = \psi F_{t-1} + G u_{t}$$
$$= \begin{pmatrix} \psi & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{t-1} \\ f_{t-2} \end{pmatrix} + \begin{pmatrix} u_{t} \\ 0 \end{pmatrix}$$

so that

$$G = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and

$$Gu_t \sim i.i.d.N(0, \underbrace{\sigma_u^2 G G'}_{0})$$

$$\begin{pmatrix} \sigma_u^2 & 0 \\ 0 & 0 \end{pmatrix}$$

(c) One can use information criteria. The number of factors r is chosen such that it minimizes the objective function (the log likelihood) plus a penalty term that increases in r, with respect to r.

Solution to problem 4

(a) (1 point) Transformed model:

$$Py = PX\beta + PG\mu + Pe$$

(2 points) Py consists of vectors of individual specific means over time:

$$Py = \begin{pmatrix} \mathbb{1}_T \cdot \sum_{t=1}^T y_{1t} \\ \vdots \\ \mathbb{1}_T \cdot \sum_{t=1}^T y_{Nt} \end{pmatrix}$$
 (16)

(1 point) The columns of the matrix PX contain the individual-specific means of the regressor observations over time.

(b) (5 points) Expectation:

$$\mathbb{E}[\widehat{\beta}_W] = \mathbb{E}[(X'QX)^{-1}X'Qy] \tag{17}$$

$$= (X'QX)^{-1}X'Q\mathbb{E}[X\beta + G\mu + e] \tag{18}$$

$$= (X'QX)^{-1}X'Q\mathbb{E}[X\beta + G\mu + e]$$

$$= (X'QX)^{-1}X'Q(QX\beta + QG\mu + \mathbb{E}[Qe])$$

$$= (X'QX)^{-1}X'QX\beta$$
(19)
$$= (X'QX)^{-1}X'QX\beta$$
(20)

$$= (X'QX)^{-1}X'QX\beta \tag{20}$$

$$=\beta$$
 (21)

(5 points) Covariance matrix:

$$V[\widehat{\beta}_W] = V[\beta + (X'QX)^{-1}X'Qe]$$
(22)

$$V[\widehat{\beta}_{W}] = V[\beta + (X'QX)^{-1}X'Qe]$$

$$= (X'QX)^{-1}X'Q \underbrace{V[e]}_{=\sigma_{e}^{2}I_{NT}} QX(X'QX)^{-1}$$

$$= \sigma_{e}^{2}(X'QX)^{-1}$$
(24)

$$= \sigma_e^2 (X'QX)^{-1} \tag{24}$$

Throughout, we have used the projection properties of Q: Q = Q' = QQ.

(c) (3 points) In a model without individual heterogeneity, the pooled OLS estimator is efficient:

$$\widehat{\beta} = (X'X)^{-1}X'y. \tag{25}$$

(3 points) Using $\widehat{\beta}_W$ in this setting implies subtracting individual-specific means from each data point. This is not necessary here.