
Name:

Midterm 1 Department of Mathematics

Dynamical Systems 637 College of Science

Date: Tuesday March 23, 2021, 12:15 - 14:15

Instructions: 4 questions.

Please show all work and answers.

Final grade: # ptn/10.
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ż

1

CA =

0

B@
1 0 0

�1 2 0

1 1 2

1

CA

0

B@
x

y

z

1

CA .

a) [10%] Compute the eigenvalues and eigenvectors, and determine whether A is

diagonalizable;

b) [15%] Determine etA and give an expression for the solution of the initial value

problem starting at t0 = 0;

(2) Consider the following system of di↵erential equations:

ẋ = 2x;

ẏ = �y � x3.

a) [10%] Find an explicit solution for the above system with initial values x(0) = x0

and y(0) = y0;

b) [10%] Use the answer in a) to find explicit formulas for the local stable and

unstable manifolds at the equilibrium point (0, 0);

c) [10%] Sketch the phase plane of flow-lines.

(3) Consider the system

ẋ = �3
2x

2
+ y;

ẏ = �y + x.
1



a) [10%] Show that the system is a gradient system and find a potential function

V (x, y);

b) [10%] Compute the equilibrium points and classify them;

c) [10%] Sketch the phase plane of flow-lines (Hint: first draw some level sets for

V ).

(4) Consider the following system of di↵erential equations:

ẋ = �y � x(x2
+ y2 � 1);

ẏ = x� y(x2
+ y2 � 1).

Denote the local flow generated by the above system by �t.

a) [10%] Show that any disc Dr = {(x, y) | x2
+ y2 < r}, with r > 1, is forward

invariant (recall that a set S is forward invariant if for every (x, y) 2 S there

exists a time ⌧(x, y) > 0 such that �t(x, y) 2 S for all t 2 [0, ⌧(x, y)]);

b) [5%] Show that the circle C = {(x, y) | x2
+ y2 = 1} is invariant for the local

flow �t;

Good luck!
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3 a Suppose the system is a gradientsystem
Then there exists a potentialfunction VCxey
such that
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