
Name:

Midterm 1 Department of Mathematics

Dynamical Systems 637 College of Science

Date: Wednesday March 25, 2020, 12:15 - 14:15

Instructions: 3 questions.

Please show all work and answers.

Final grade: # ptn/10.

(1) Given the system  ẋ

ẏ

ż

 =

 −1 0 0

0 9 5

0 −10 −5


 x

y

z

 .

a) [10%] Compute the eigenvalues and (generalized) eigenvectors;

b) [15%] If the matrix in the above system is denoted by A, compute etA and give

an expression for the solution of the initial value problem starting at t0 = 0;

c) [5%] Provide a sketch of the flow lines of the above system.

(2) Consider the following system of differential equations:

ẋ = −x;

ẏ = y − x3 + x2.

a) [5%] Compute all equilibrium points;

b) [10%] Determine eigenvalues and eigenvectors of the point (0, 0);

In order to compute the local stable manifold (curve) of the equilibrium point (0, 0)

we use the iteration scheme:

un+1(t, a) = U(t)a +

∫ t

0

U(t− s)G(un(s, a))ds−
∫ ∞
t

V (t− s)G(un(s, a))ds

u0(t, a) = (0, 0),

where U(t) =

(
e−t 0

0 0

)
and V (t) =

(
0 0

0 et

)
and G(x, y) =

(
0

−x3 + x2

)
.

1



c) [15%] Carry out the iteration scheme and show that the sequence stabilizes (hint:

use a = (a1, 0) and determine u(t, a));

d) [10%] Derive an equation for the local stable manifold;

e) [10%]1 Explain why the equation for the local stable manifold yields the global

stable manifold of (0, 0).

(3) Consider the system
ẋ = y;

ẏ = x3 − x2 − 2x.

a) [10%] Show that the system is Hamiltonian and find a Hamiltonian;

b) [10%] Compute the equilibrium points and determine their nature;

c) [10%] Sketch the phase plane of flow lines.

Good luck!

1Extra credit problem.
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