
Department of Computer Science Exam Distributed Systems
Vrije Universiteit Exam code: X 400130
Dr. T. Kielmann 04 – 02 – 2015

Please make sure that your handwriting is readable!

This is a “closed book” exam.
No printed materials or electronic devices are admitted for use during the exam.
You are supposed to answer the questions in English.

Wishing you lots of success with the exam!

Grading: The final grade is calculated by accumulating the scores per question (maximum: 90
points), and adding 10 bonus points. The maximum total is therefore 100 points. To pass the
exam, it is sufficient to get at least 55 points.

1. Failures
1.a: Explain the differences among an asynchronous system, a synchronous system, and a partially
synchronous system and which kinds of failures can be detected with such systems. 6pt
1.b: How large must a k-fault tolerant group be for halting failures and for arbitrary failures? 4pt
1.c: Consider a k-fault tolerant group, with k > 1. Assume that one process fails. Do we still have
a k-fault tolerant group? Explain your answer! 4pt
1.d: What is being achieved using the Paxos algorithm? Which kind(s) of failures can be handled
by Paxos? 4pt

2. RPC/RMI
2.a: How does RPC achieve location transparency? What are the limitations in this respect? 3pt
2.b: How does Java RMI overcome some of these limitations? 3pt
2.c: If your middleware only supports synchronous RPC, what can you do to improve geographical
scalability? 3pt
2.d: When objects are replicated across multiple servers, which additional problem is caused with
remote method invocation on such replicated objects? How can this problem be solved? 6pt

3. Naming
3.a: Explain (briefly!) the concepts of name, address, and identifier. 3pt
3.b: In a Hierarchical Location Service, the underlying network is divided into hierarchical do-
mains; each domain is represented by a separate directory node. How are lookups performed in
such a system? What is the scalability problem and how can it be resolved? 5pt
3.c: Using the global DNS system, there are issues with size scalability and geographical scala-
bility. Explain how these problems are caused and how they are addressed. 4pt

1



4. Causality
4.a: Show that logical clocks do not necessarily capture potentially causal relationships. 4pt
4.b: When using vector clocks for enforcing causally ordered multicasting, V Ci[i] is incremented
only when process Pi sends a message, and sends V Ci as a timestamp ts(m) with message m.
How should we interpret the following two conditions for delivering m when received by process
Pj: 4pt

1. ts(m)[i] = V Cj[i] + 1.

2. ts(m)[k] ≤ V Cj[k] for k 6= i.

4.c: Take V C2 = [0, 2, 2] and a message m being sent by process P0 with ts(m) = [1, 3, 0]. What
information does P2 have, and what will it do when receiving m (from P0)? 4pt
4.d: We always carefully talk about tracking “potentially” causal relationships by middleware.
Why “potential?” 2pt

5. Gossiping
5.a: Explain the basics how gossiping algorithms work. 4pt
5.b: How can one delete an item that has been distributed with gossiping? 6pt
6. Consistency
6.a: Consider the following four execution. We write W1 as an abbreviation for W (x)1, and 6pt
likewise R2 for R(x)2, where x is the variable shared by the processes P1, . . . , P4. Which of these
four executions are sequentially consistent, and which ones are not? Explain your answer. Hint:
think twice in cases (c) and (d).

6.b: Give an eample where using only client-centric consistency will lead to a conflict between
update operations. 5pt

7. Unstructured peer-to-peer (P2P) systems
7.a: Describe the graph structure of an unstructured P2P system. 3pt
7.b: Which two approaches can be applied to searching in an unstructured P2P system? How do 7pt
these approaches compare w.r.t. completion time and communication effort (no formulas needed)?

2


