
Resit Distributed Algorithms

Vrije Universiteit Amsterdam, 5 July 2023, 18:45-21:30

You may use (a hard copy or print-out of) the textbook Distributed Algorithms: An Intuitive Ap-

proach. Use of solutions to exercises, slides, notes, laptop is not allowed.

The exercises in this exam sum up to 90 points; each student gets 10 points bonus.

1. Explain how vector clock values can be computed at run-time. (12 pts)

Solution: VC can be computed at runtime as follows. Let a be an event at a
process pi, and (k0, . . . , kN−1) the clock value of the previous event at pi (take
(0, . . . , 0) if there is no such previous event).

∗ Suppose a is an internal or send event. Then VC (a) = (k0, . . . , ki+1, . . . , kN−1).

∗ Suppose a is a receive event. Let sender pj attach the clock value (`0, . . . , `N−1)
of the corresponding send event to the message. Then VC (a) =

(max{k0, `0}, . . . ,max{ki−1, `i−1}, ki+1, max{ki+1, `i+1}, . . . ,max{kN−1, `N−1}).

2. Give an example where in the Peterson-Kearns rollback recovery algorithm a
process must retrieve from one of its checkpoints a basic message it needs to
resend to the crashed process. (12 pts)

Solution: Process q sends a message m to process p, takes a checkpoint, crashes,
and recovers. Next, p crashes, and m reaches p between p’s last checkpoint and
its recovery. Now q must resend m, which it needs to retrieve from its checkpoint.

3. Give an example run of the Dolev-Klawe-Rodeh election algorithm on a directed
ring of seven processes to show that an active process can receive a message for
two rounds ahead. (12 pts)

Solution: Consider seven consecutive active processes in the directed ring with
IDs 1, 5, 2, 7, 3, 6, and 4, respectively. In round 0, process 4 sends a message
to its successor 1, which is slow. Processes 2, 3, and 4, after receiving messages



from their two nearest predecessors, remain active in round 1, where they assume
ID 5, 7, and 6, respectively. Processes 7 and 6 become passive in round 0, while
processes 1 and 5 keep waiting for a message from process 4 in round 0. In round
1, process 4 (now carrying ID 6), after receiving messages from its nearest two
active neighbors in this round, sends a second message to its successor 1, which
again is slow. Since process 4 receives IDs 5 and 7 in round 1 and carries ID 6,
it remains active in round 2, where it assumes ID 7 and sends a third message to
its successor 1. This message overtakes the earlier two messages that process 4
sent.

4. Propose an adaptation of the Itai-Rodeh election algorithm in which the Boolean
fourth parameter in messages, to recognize whether another process selected the
same random ID in the current election round, is omitted. (14 pts)

Solution: Each active process p maintains a Boolean, which is reset at the start
of each new election round, and which is set if a message for the current election
round with the same ID as p’s ID in this round arrives with a hop count smaller
than N .

If p receives its own message back and its Boolean is set, it starts the next election
round, with a new random ID.

If p receives its own message back and its Boolean is not set, it becomes the
leader. From then on it will not pass on any more messages.

When a process becomes the leader, the computation may not yet have been
terminated. So the leader will have to announce that it has become the leader,
as else other processes that selected the same ID as the leader in the last round
may stay active forever.

5. Consider a complete network of five processes. Apply the Chandra-Toueg 2-crash
consensus algorithm, where initially four processes choose the value 0 and one
process the value 1. Give a computation in which all correct processes decide for
1. (12 pts)

Solution: Initially, p0 has value 1, while p1, p2, p3, p4 have value 0.

In round 0, p0 gets 〈vote, 0, 1,−1〉 from itself and 〈vote, 0, 0,−1〉 the other four
processes. Since all these messages have the same last-update value −1, p0 can
pick any of the values it received, and arbitrarily picks its own value 1.

p0 broadcasts 〈value, 0, 1〉



p0 receives 〈ack, 0〉 from all processes.

p0 decides for 1, and broadcasts 〈decide, 1〉.
All other processes receive this message, and also decide for 1.

6. Suppose that in a run of the BB84 quantum key exchange protocol, Eve checks
all bits sent from Alice to Bob. How many mistakes is she expected to introduce
in the secret key computed by Bob? (9 pts)

Solution: On roughly n
2

of the n bits sent by Alice, Eve will guess correctly
whether the Hadamard transform was applied by Alice. These bits will give
the correct outcome at Bob (assuming that on bits to which Eve applied the
Hadamard transform, she applies the Hadamard transform once again before
passing them on to Bob).

On the roughly n
2

bits where Eve guesses wrong, she has a 50% chance of in-
troducing an error at Bob. So on roughly n

4
bits she introduces a mistake at

Bob.

On roughly half, so n
8
, of these bits will Alice and Bob both have done the same

thing (both applied the Hadamard transform or both didn’t do so).

Concluding, of the n
2

bits on which Alice and Bob both have done the same thing,
Bob is expected to have read the wrong value on 25% of these bits, due to the
interference of Eve.

7. Let Alice and Bob build a private key using the Diffie-Hellman key exchange
protocol, with p = 17 and d the smallest positive integer that is a primitive root
modulo 17. Moreover, let a = 2 and b = 3. Explain how Alice and Bob construct
their private key. (10 pts)

Solution: The smallest primitive root modulo 17 is 3, because its respective
powers modulo 17 are: 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1. (2 is not a
primitive root: 2, 4, 8, 16, 15, 13, 9, 1.)

Alice computes 32 = 9 mod 17 and sends 9 to Bob. Bob computes 33 = 27 =
10 mod 17 and sends 10 to Alice.

Alice computes 102 = 100 = 15 mod 17 and Bob computes 93 = 729 = 15 mod
17. So their private key is 15.



8. In the Winternitz signature, why would the checksum b1+ · · ·+bn be less effective
against replay attacks than the actual checksum? (9 pts)

Solution: Let Eve try a replay attack with binary numbers c1, , cn, where ci ≥ bi
for i = 1, . . . , n. The checksum c1 + · · ·+ cn for attacker Eve produces a sequence
of binary numbers cn+1 · · · cm that may all be greater or equal than the sequence
of binary numbers bn+1 · · · bm produced by Alice’s checksum. That is, possibly
ci ≥ bi for i = n+ 1, . . . ,m. Thus Eve’s replay attack might still be possible with
regard to the extended signature that takes into account the checksum.


