Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 31 May 2023, 18:45-21:30

(You may use the textbook Distributed Algorithms: An Intuitive Approach. Use of slides, solutions to exercises, notes, laptop, calculator is not allowed.)

(The exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

- 1. Let the Dijkstra-Scholten algorithm be employed to detect termination of some centralized basic algorithm. Give an execution of the basic algorithm in which an active process q has a parent p in the Dijkstra-Scholten tree while q was made active for the last time by a process $r \neq p$. (10 pts)
- 2. Consider the weight-throwing termination detection algorithm with the counter $credit_p$ for recording weight, to avoid underflow. Why does an active process that receives a basic message not return this weight to the initiator immediately, but only after it has become passive? (10 pts)
- 3. Consider Franklin's election algorithm for undirected rings (with non-FIFO channels).
 - (a) Give an example to show that an active process in election round n can receive a message for round n+1 before receiving the message for round n from this same direction, where these two messages carry different IDs.

(8 pts)

(b) Argue that it cannot receive a message for two rounds ahead. (12 pts)

- 4. Consider the Bracha-Toueg k-crash consensus algorithm, with $k < \frac{N}{2}$. Let more than $\frac{N+k}{2}$ processes choose the value b in the initial configuration. Argue that the correct processes will inevitably decide for b within three rounds. (10 pts)
- 5. Consider the heights (h_1, h_2) in the Walter-Welch-Vaidya mutual exclusion algorithm.
 - (a) Argue that the minimum h_1 -value in the network never decreases during computations. (8 pts)
 - (b) Give an example where the minimum h_2 -value in the network increases during a computation. (6 pts)
- 6. Suppose that in step 2 of the Kerberos authentication protocol, the authentication server would include the server ID S in the ticket it sends to the client. Explain how this would seriously hamper the applicability of the Kerberos protocol.

 (10 pts)
- 7. (a) Consider the Winternitz signature scheme with k = 10 and $\ell = 3$. Let 0100111010 be the hash of Alice's message to Bob. Explain how Alice signs her message, taking into account the checksum, and how Bob verifies this signature. (8 pts)
 - (b) Suppose the Winternitz signature from (a) is placed in the third leaf of a binary Merkle tree of depth 4 and used by Alice in a Merkle signature of a message to Bob. Explain concretely what the signature looks like and how this signature is employed by Bob to verify whether the public key is genuine.

 (8 pts)