
Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 31 May 2023, 18:45-21:30

(You may use the textbook Distributed Algorithms: An Intuitive Approach. Use of slides, solutions

to exercises, notes, laptop, calculator is not allowed.)

(The exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Let the Dijkstra-Scholten algorithm be employed to detect termination of some
centralized basic algorithm. Give an execution of the basic algorithm in which
an active process q has a parent p in the Dijkstra-Scholten tree while q was made
active for the last time by a process r 6= p. (10 pts)

Solution: Let the network consist of channels pq and qr. First, q is made active
by a basic message from initiator p, so that q joins the tree with parent p. Next,
q makes r active by sending it a basic message, so that r is q’s child in the tree.
Next, q becomes passive, but remains in the tree because it has child r. Next, q
is made active again by a basic message from r.

2. Consider the weight-throwing termination detection algorithm with the counter
creditp for recording weight, to avoid underflow. Why does an active process that
receives a basic message not return this weight to the initiator immediately, but
only after it has become passive? (10 pts)

Solution: Since weight cannot be reused, there is no hurry in returning weight
to the initiator, who will need to keep returned weight separate from weight it
distributes through the system. Returning weight to the initiator after having
become passive, instead of immediately, reduces overhead in the number of control
messages.

3. Consider Franklin’s election algorithm for undirected rings (with non-FIFO chan-
nels).

(a) Give an example to show that an active process in election round n can
receive a message for round n + 1 before receiving the message for round n



from this same direction, where these two messages carry different IDs.
(8 pts)

Solution: Consider four consecutive active processes in the ring with IDs 1,
4, 2, and 3, respectively, that send out their messages in round 0. Processes
2 and 4 receive the messages for election round 0, where 2 becomes passive
while 4 moves to round 1 and sends out messages again. The message from
process 4 in round 1 is forwarded by process 2 and overtakes the message
from process 2 in round 0. Now process 3 receives the message from process
4 in round 1 before the message from process 2 in round 0.

(b) Argue that it cannot receive a message for two rounds ahead. (12 pts)

Solution: Let active process p be in election round n. Consider in either of
the two directions the nearest neighbor q of p that reached an election round
beyond n. (If there is no such neighbor, clearly p can never have received
a message for a round beyond n.) Then q can from its direction toward p
not have received a message for an election round beyond n, so it must be
in round n + 1. Hence it cannot have sent a message toward p in a round
beyond n + 1.

4. Consider the Bracha-Toueg k-crash consensus algorithm, with k < N
2

. Let more
than N+k

2
processes choose the value b in the initial configuration. Argue that

the correct processes will inevitably decide for b within three rounds. (10 pts)

Solution: In round 0, each correct process receives more than N−k
2

b-votes, and
only (1− b)-votes with weight 1. So it changes its value to b.

In round 1, each correct process receives only b-votes, and changes its weight to
N − k.

In round 2, each correct process receives only b-votes with weight N −k. So each
correct process decides for b no later than round 2.

5. Consider the heights (h1, h2) in the Walter-Welch-Vaidya mutual exclusion algo-
rithm.

(a) Argue that the minimum h1-value in the network never decreases during
computations. (8 pts)

Solution: There are two situations in which a nonroot p updates the h1-
value of its height.



In the first case, all p’s edges have become incoming. This means p’s original
h1-value is greater or equal than the h1-values of all its neighbors. And p
increases its h1-value to the minimum h1-value among its neighbors plus 1.

In the second case, p becomes the new root. This means p’s original h1-
value is greater or equal than the h1-value of the old root. And it copies the
h1-value of the old root.

In both cases, clearly, p’s new h1-value is greater or equal than the minimum
h1-value among p and its neighbors before p’s h1-value was updated.

(b) Give an example where the minimum h2-value in the network increases
during a computation. (6 pts)

Solution: Let nonroot p have an h2-value at least two smaller than any
other node in the network.

The easiest example is when p becomes the new root. Then p changes its
h2-value to the h2-value of the old root minus one.

Another example is that the only outgoing edge of p disappears, and p
forges a new height which has the same h1-value as a neighbors of p. Then
p changes its h2-value to the minimum h2-value among its neighbors with
the same h1-value, minus one.

In both cases, clearly the minimum h2-value in the network increases.

6. Suppose that in step 2 of the Kerberos authentication protocol, the authenti-
cation server would include the server ID S in the ticket it sends to the client.
Explain how this would seriously hamper the applicability of the Kerberos pro-
tocol. (10 pts)

Solution: A key advantage of the Kerberos protocol is that, by separating the
authentication and ticket-granting server, a user can reuse a session key and
ticket from the authentication server at the ticket-granting server for setting up
sessions with different servers, without having to repeatedly employ her password.
If the server name S were included in the ticket obtained from the authentication
server, then this reuse would become impossible, as each session with another
server would require obtaining a new ticket from the authentication server.

7. (a) Consider the Winternitz signature scheme with k = 10 and ` = 3. Let
0100111010 be the hash of Alice’s message to Bob. Explain how Alice signs



her message, taking into account the checksum, and how Bob verifies this
signature. (8 pts)

Solution: Two 0’s are padded at the left of the hash of the message, to
make its length divisible by 3. The binary representations of b1, b2, b3 and
b4 are 000, 100, 111 and 010, respectively, so b1 = 0, b2 = 4, b3 = 7 and
b4 = 2.

The checksum is (7 − 0) + (7 − 4) + (7 − 7) + (7 − 2) = 15. Its binary
representation is 1111. Two 0’s are padded at the left to make its length
divisible by 3. This means the binary representations of b5 and b6 are 001
and 111, so b5 = 1 and b6 = 7.

Alice generates large random numbers X1, X2, X3, X4, X5, X6, which form
her private key.

Her public key is h(h7(X1) ‖h7(X2) ‖h7(X3) ‖h7(X4) ‖h7(X5) ‖h7(X6)).

Her signature is X1 ‖h4(X2) ‖h7(X3) ‖h2(X4) ‖h(X5) ‖h7(X6).

Bob uses the hash of the message to compute b1, . . . , b6.

With regard to Alice’s signature, he applies h7 to h(X1), h3 to h4(X2),
leaves h7(X3) unchanged, h5 to h2(X4) and h6 to h(X5) and leaves h7(X6)
unchanged. Finally, he applies h to the concatenation of these strings, com-
pares the result to the public key, and accepts Alice’s signature.

(b) Suppose the Winternitz signature from (a) is placed in the third leaf of a
binary Merkle tree of depth 4 and used by Alice in a Merkle signature of
a message to Bob. Explain concretely what the signature looks like and
how this signature is employed by Bob to verify whether the public key is
genuine. (8 pts)

Solution: Alice’s signature takes the form sig3 ‖Y3 ‖h(Y4) ‖H31 ‖H22 ‖H12

with sig3 the signature and Y3 the public key from (a). Each H-values is
the h-value of the concatenation of the strings in the two children of the
corresponding node in the Merkle tree.

Bob applies h to Y3 to determine the value in the third leaf. Then he
consecutively computes H32 = h(h(Y3) ‖h(Y4)), H21 = h(H31 ‖H32), H11 =
h(H21 ‖H22), and H01 = h(H11 ‖H12). He compares the computed value of
H01 with the Merkle root.


