
Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 1 June 2022, 18:45-21:30

(You may use the textbook Distributed Algorithms: An Intuitive Approach. Use of slides, solutions

to exercises, notes, laptop, calculator is not allowed.)

(The exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Suppose that in a run of the Bracha-Toueg deadlock detection algorithm, some
NOTIFY, DONE, GRANT, or ACK message is in transit. Explain why the
initiator of this run can then not yet have received a DONE from all neighbors
to which it sent a NOTIFY. (14 pts)

Solution: Suppose a notify is in transit from p to q. Then q has not yet sent a
done to p. So if p is a noninitiator it has not yet sent a done to its parent, etc.,
meaning the initiator is still waiting for one or more done’s to arrive.

Likewise if a done is in transit from q to p.

Suppose a grant is in transit from p to q. Then q has not yet sent an ack to
p. So if p is not the initiator of this grant/ack subtree, it has not yet sent an
ack to its parent in this subtree, etc., meaning the initiator from this subtree
is still waiting for one or more ack’s to arrive before it can send a done to its
parent (or, in case this is also the initiator of the entire run, before it can check
its requests counter). Now as before it can be argued that the initiator of the
entire run is still waiting for done’s to arrive.

Likewise if an ack is in transit from q to p.

2. Adapt the tree election algorithm so that the initiator with the largest ID be-
comes the leader. (9 pts)

Solution: In the computation of maxp, process p only takes into account its own
ID if it is an initiator. In particular, if a leaf is a noninitiator, it sends a bottom
element ⊥ to its parent.

Alternatively, noninitiators can in tree election replace their own ID by a number
smaller than all regular IDs.



3. Suppose that, at some point in the Gallager-Humblet-Spira minimum spanning
tree algorithm, a process p receives a message 〈test, fn, `〉 through channel pq,
where p’s fragment has a different name than fn and at least level `. Explain why
p can send an accept message to q without fear that p and q are in the same
fragment. (13 pts)

Solution: We make two observations.

1. If a process is in the state find, then it carries the most up-to-date name
and level of its fragment.

Namely, if a process is in the state find, then it received a message 〈initiate, fn, `, find〉
with the most up-to-date name fn and level ` of its fragment, and the core nodes
of its fragment are waiting for messages regarding the lowest-weight outgoing
edge of this fragment.

2. When the name of a fragment changes at a process, always at the same time
its level increases.

Since q sends a test message to p, q must be in the state find. So by observation
1, q carries the most up-to-date name and level of its fragment F .

Suppose, toward a contradiction, that p is also in the fragment F . Then by
observation 2, the assumption namep 6= nameq would imply that levelp < level q.
This contradicts the assumption that levelp ≥ level q.

Concluding, p and q are not in the same fragment.

4. There is no Las Vegas algorithm for termination detection on anonymous networks.

Why can the Shavit-Francez termination detection algorithm not be carried over
to anonymous networks? That is, where do you run into problems? (12 pts)

Solution: When a tree disappears, its initiator must start a wave, tagged with its
ID, to check whether all trees have disappeared. In an anonymous network, this
ID must be chosen at random. If two initiators start such a wave concurrently
and happen to select the same random ID, these waves would collide and one
(or both) of these waves could complete successfully without having covered the
entire network, meaning there may still be active processes in the network. Then
termination would be announced prematurely.



5. Explain how a logical clock could be used to make the Walter-Welch-Vaidya
mutual exclusion algorithm for MANETs operate correctly if edges are not FIFO.

(14 pts)

Solution: The problem with non-FIFO edges is that a node can receive and take
into account outdated height information from a neighbor that was overtaken by
later height updates. Thi could for instance lead to a cycle in the sink tree.

The vector clock, which can be computed at run-time also in a dynamic network,
can be used to spot that height information is outdated as follows. Let each
message contain the clock value of its send event.

Nodes keep track for each node pi from which they received at least one height
update, what is the highest ith index of clock values of height updates received
from pi. If a height update from pi is received with a smaller ith index as clock
value, then it is ignored.

When the old root sends the token to the new root, the old root ignores height
updates from the new root until it receives a height update with a clock value
larger than the one it included in the token.

Note: The last part of this solution would not work properly with Lamport’s
clock.

6. Consider a distributed transaction with one coordinator and three cohorts. Give
two computations of the two-phase commit protocol in which crashed processes
must resume their execution before agreement can be reached on whether the
transaction commits, one in which all participants vote yes and one in which one
cohort votes no. Also show how these two computations could proceed in the
case of the three-phase commit protocol. (14 pts)

Solution: In the first computation, all participants vote yes. The coordinator
sends commit to one of the cohorts, after which the coordinator crashes. This
cohort receives the commit, commits the changes it made during the transaction,
and also crashes. In the second computation, one cohort votes no and the other
participants vote yes. The coordinator sends abort to the cohort that voted no,
after which the coordinator crashes. This cohort receives the abort, rolls back
the changes it made during the transaction, and also crashes.

In the first computation, in the three-phase commit protocol, the coordinator
does not send commit but precommit to the cohort. So when the coordinator
and the cohort crash, the other cohorts can safely abort the transaction, since
they did not reply to a precommit from the coordinator, so that they can be



certain no participant committed the changes it made during its transaction.
Likewise, in the second computation, the cohorts that did not crash can safely
abort the transaction.

7. Consider the Winternitz signature scheme with k = 11 and ` = 3. Let 10010101100
be the hash of Alice’s message to Bob. Explain how Alice signs her message, tak-
ing into account the checksum, and how Bob verifies this signature. (14 pts)

Solution: k = 11 and ` = 3, so n = 4.

One 0 is padded at the left of the hash 10010101100 of Alice’s message. The 4
binary substrings of length 3 that constitute the resulting string, i.e., 010, 010,
101 and 100, are binary representations of the numbers 2, 2, 5 and 4, respectively.

Alice computes as checksum (7− 2) + (7− 2) + (7− 5) + (7− 4) = 15, which has
as binary representation 1111. Two 0’s are padded at the left to make the length
of this string divisible by 3. The 2 binary substrings of length 3 that constitute
the resulting string, i.e., 001 and 111, are binary representations of the numbers
1 and 7, respectively.

Alice generates a private key of 6 random numbers X1 ‖X2 ‖X3 ‖X4 ‖X5 ‖X6

and publishes the corresponding public key h(h7(X1) ‖h7(X2) ‖h7(X3) ‖h7(X4) ‖h7(X5) ‖h7(X6)).
She signs her message with h2(X1) ‖h2(X2) ‖h5(X3) ‖h4(X4) ‖h(X5) ‖h7(X6).

To verify the signature, Bob computes the hash of the message and the checksum,
thus determining the sequence of numbers 2, 2, 5, 4, 1, 7. He applies h5 to h2(X1),
h5 to h2(X2), h

2 to h5(X3), h
3 to h4(X4), h

6 to h(X5), and nothing to h7(X6).
Finally, he applies h to the concatenation of the 6 resulting strings and checks
that the outcome coincides with Alice’s public key.


