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I declare to understand that taking an online exam during this corona crisis is an emergency measure to
prevent study delays as much as possible. I know that fraud control will be tightened and realize that
a special appeal is being made to trust my integrity. With this statement, I promise to make this exam
completely on my own, only consult those sources that are allowed explicitly, not share my solutions with

other students, and make myself available for any oral clarifications regarding this exam.

You can write your solutions with pen and paper. You are allowed to open the pdf’s of the textbook and
slides (only) at the following links. You are advised to open them in different tabs in your browser.

e https://canvas.vu.nl/courses/53186/files/3745199
e https://canvas.vu.nl/courses/53186/files/3745089

(The 7 exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Explain how the values of the vector clock can be computed at run-time in case of

synchronous message passing communication. (14 pts)

Solution:
« Let a be an internal event at a process p;, with (ko,...,ky_1) the clock value of
the previous event at p; (take (0,...,0) if there is no such previous event). Then

VO(CL) = (ko,...,ki—l— 1,...,]{]\[71).

* Let a be a send event at p; and b is the corresponding receive event at p;, with
(ko, ..., kn_1) the clock value of the previous event at p; with (¢, ...,¢y_1) the
clock value of the previous event at p;. Then VC(a) = VC(b) =

(max{k;o,fg}, ce kz + 1, e 7€j + 1, R ,max{kN_l,EN_l}).

In an implementation of synchronous communication, the sending party must wait
with sending a message until the receiving party is ready to receive it. So the sending
party needs to be informed on the state of the receiving party. Thus we can assume in
the second case that it knows the value of (fy,...,ln_1).

2. Consider the requirement that processes that never crash are never suspected. Argue
that this requirement is weaker than strong accuracy and stronger that eventual strong
accuracy. (14 pts)



Solution: Strong accuracy clearly implies the requirement, because if only crashed
processes are ever suspected, then processes that never crash are never suspected.

To show that the requirement does not imply strong accuracy, give a computation in
which a process p in Crash(F) is suspected before it has crashed. To be more precise,
pis in H(q,7) for some other process ¢ and some time 7, p isn’t in F'(7), and p is in
F(7") for some 7" > 7.

The requirement clearly implies eventual strong accuracy. For each execution, from
some point on, no processes will crash anymore. The requirement means that from
that point on there will be no more false suspicions.

To show that eventual strong accuracy does not imply the requirement, give a com-
putation in which some process that never crashes is suspected by another process at
some moment in time (and eventually there are no false suspicions anymore).

3. Propose an adaptation of the weight-throwing termination detection algorithm that
works for decentralized basic algorithms. (12 pts)

Solution 1: Each initiator of the basic algorithm initially holds a certain amount of
weight. Weight is distributed through the system in the same way as in the weight-
throwing termination detection algorithm for centralized basic algorithms, but weights
originating from different initiators are kept separately. Some weight from some (or
more) initiator(s) must be attached to each basic message. When a process becomes
passive, it returns the weights it holds to the initiators from which they originate.

When an initiator has becomes passive and reclaimed all weight it held at the start,
it starts a wave. Only passive noninitiators and passive initiators that have reclaimed
all weight they held at the start take part in this wave. If the wave completes at an
initiator, it calls Announce.

Solution 2: There is still a single initiator of the weight-throwing termination detec-
tion algorithm, which starts the computation by distributing weights to all initiators
of the basic algorithm. Weight is distributed through the system in the same way as in
the weight-throwing termination detection algorithm for centralized basic algorithms.
Passive processes return their weight to the initiator of the control algorithm. When
the initiator of the control algorithm has become passive and reclaimed all weight in
the system, it calls Announce.

Note: Underflow can be dealt with in the same ways as for the weight-throwing
termination detection algorithm for centralized basic algorithms.

4. Consider the Agrawal-El Abbadi algorithm with N = 2*¥ — 1 processes. Let fewer than



k processes have crashed. Argue, by induction on the depth of the complete binary
tree, that the remaining network still contains a quorum. (14 pts)

Solution: The base case, where the binary tree is a single node, is trivial, because
then N = k = 1, so there is only one process, which has not crashed and forms a
quorum.

In the inductive case we distinguish two cases.

Case 1: Let the process at the root of the binary tree have crashed. Since fewer than
k — 1 of the other processes have crashed, by induction both subtrees below the root,
which have depth k — 1, contain a quorum of live processes. The union of two such
quorums, one in each of the subtrees, forms a quorum for the entire network.

Case 2: Let the process at the root of the binary tree not have crashed. Since fewer
than k of the other processes have crashed, in at least one of the two subtrees of the
root fewer than k — 1 processes have crashed. By induction that subtree, which has
depth k£ — 1, contains a quorum of live processes. The union of that quorum with the
root forms a quorum for the entire network.

. In the two-phase commit protocol, let only the coordinator crash, right between the
voting and the completion phases. Why can the cohorts safely abort the transaction?
You may assume there is a known upper bound on network latency. (14 pts)

Solution: In case the coordinator decided to commit the transaction, it would send the
commit messages before making visible its writes during the transaction. The cohorts
can, after the last yes vote was sent to the coordinator, wait for twice the upper bound
on network latency whether a commit message arrives. After this waiting period, they
can agree together that no commit messages were sent to them, and so no writes of
the transaction were made visible by any of the participants in the transaction. They
can roll back to the old values before the transaction.

. Consider the Chord ring depicted in Example 18.1 of the textbook. Suppose a peer
joins the ring at ID 45. Explain in detail how this peer computes its initial finger table.
(12 pts)

Solution: This peer ¢ copies the finger table of its successor s at ID 48: finger,[1] =
finger[2] = 51, finger,[3] = finger,[4] = 56, finger,[5] = 1, and finger,[6] = 14.

q concludes that finger,[1] = finger,[2] = 48 and finger,[3] = 51. Furthermore, g looks
up its three remaining finger values using the finger table of s. To determine finger,[4],
q searches for the ID 45 + 23 = 53. It contacts the peer at ID 51, who locates ID 45
at the peer at ID 56. So finger,[4] = 56. To determine finger,[5], q searches for the ID



45 4+ 2* = 61. It contacts the peer at ID 56, who locates ID 61 at the peer at ID 1. So
finger,[5] = 1. To determine finger,[6], ¢ searches for the ID 45+42° = 77 = 13 mod 64.
It contacts the peer at ID 1. That peer in turn contacts the peer at its 3rd finger value
ID 8, who locates ID 13 at the peer at ID 14. So finger,[6] = 14.

. Let Alice and Bob build a private key using the Diffie-Hellman protocol, with p = 13
and d the smallest positive integer that is a primitive root modulo 13. Moreover, let
a =5 and b = 4. Explain how Alice and Bob construct their private key. (10 pts)

Solution: The smallest primitive root modulo 13 is 2, because its respective powers
modulo 13 are: 2,4,8,3,6,12,11,9,5,10,7, 1.

Alice computes 2° = 32 = 6 mod 13 and sends 6 to Bob. Bob computes 2¢ = 16 =
3 mod 13 and sends 3 to Alice.

Alice computes 3° = 9-27 = 9mod 13 and Bob computes 6* = 362 = 10?> mod 13 =
9 mod 13. So their private key is 9.



