
Online Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 26 May 2021, 18:45-21:30

I declare to understand that taking an online exam during this corona crisis is an emergency measure to
prevent study delays as much as possible. I know that fraud control will be tightened and realize that
a special appeal is being made to trust my integrity. With this statement, I promise to make this exam
completely on my own, only consult those sources that are allowed explicitly, not share my solutions with
other students, and make myself available for any oral clarifications regarding this exam.

You can write your solutions with pen and paper. You are allowed to open the pdf’s of the textbook and
slides (only) at the following links. You are advised to open them in different tabs in your browser.

• https://canvas.vu.nl/courses/53186/files/3745199

• https://canvas.vu.nl/courses/53186/files/3745089

(The 6 exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Propose an adaptation of the Lai-Yang snapshot algorithm in which basic messages
may be buffered at the receiving processes and the channel states of the snapshot are
always empty. (14 pts)

Solution: Processes that want to initiate a snapshot send a control message into
each outgoing channel, informing the process at the other side how many presnapshot
basic messages were sent into it. Furthermore, they start appending true to the basic
messages they send.

When a noninitiator receives a control message or a basic message with true for the
first time, it also sends a control message into each outgoing channel, informing the
process at the other side how many presnapshot basic messages were sent into it, and
starts appending true to the basic messages it sends.

Postsnaphot basic messages, with true attached, that are received through an incoming
channel are buffered until the receiver has taken its local snapshot.

When a process has received all presnapshot basic messages through all its incoming
channels, it takes a local snapshot.

2. Let Rana’s algorithm be applied to an always terminating basic algorithm. Suppose
a process at some point sends a basic message. Argue that there is a computation in
which only this process calls Announce. (14 pts)

1



Solution: Let process p send a basic message. Suppose the acknowledgment that
is sent in reply is extremely slow, so that by the time it finally reaches p, the basic
algorithm has terminated (so in particular p is passive) and all waves started by other
processes that became quiet have died out. Since p refuses to participate in any of
these waves, as p was not quiet until the acknowledgment arrived, none of these waves
ended with a decide event, so no process yet called Announce. The last concurrent
waves initiated by processes that became quiet must have visited p, as it is the only
process refusing to participate in these waves. They pushed p’s logical clock beyond
the last time any other process became quiet. So when finally the acknowledgment
arrives at p, making it quiet, the wave initiated by p will complete and p will call
Announce.

3. Give one possible computation of the Gallager-Humblet-Spira algorithm on the undi-
rected weighted network below to determine a minimum spanning tree.

During the computation, the handling of the second test message from r to p should
be delayed at p before it is rejected. (14 pts)

Solution: q and t change channel qt from basic to branch and send 〈connect, 0〉
to each other. Moreover, p changes channel pq from basic to branch and sends
〈connect, 0〉 to q. Moreover, r and s change channel rs from basic to branch and
send 〈connect, 0〉 to each other.

q and t receive each other’s connect messages and merge into one fragment with
name qt and level 1 by sending 〈initiate, qt, 1, find〉 to each other. Next, q receives
p’s connect message and sends 〈initiate, qt, 1, find〉 to p. Moreover, r and s receive
each other’s connect messages and merge into one fragment with name rs and level
1 by sending 〈initiate, rs, 1, find〉 to each other.

q and t receive each other’s initiate messages, make each other their parent, update
their fragment name and level, and both send 〈test, qt, 1〉 to s. Moreover, r and s
receive each other’s initiate messages, make each other their parent, update their
fragment name and level, and send 〈test, rs, 1〉 to p and t, respectively. Moreover, p
receives q’s initiate message, makes q its parent, updates its fragment name and level,
and sends 〈test, qt, 1〉 to r.

2



p, r, s (two times) and t receive the test messages from r, p, q, t and s, respectively,
and reply with accept.

r and s receive the accept from p and t, respectively, and send 〈report, 6〉 and
〈report, 4〉 to each other. As a result, s sends 〈connect, 1〉 to t, which postpones
replying to this message because both the connect message and t are at level 1.
Moreover, p, q and t receive the accept from r, s and s, respectively. Next, p sends
〈report, 6〉 to q, which sends 〈report, 5〉 to t, while t sends 〈report, 4〉 to q. As a
result, t sends 〈connect, 1〉 to s.

Since s and t have sent 〈connect, 1〉 to each other, now they send 〈initiate, st, 2, find〉
to each other; from s this message travels to r, and from t it travels via q to p. Parent
value and fragment name and level at these processes are changed accordingly.

r and s send 〈test, st, 2〉 to p and q. Responses to these messages are delayed at p and
q until they have received the initiate message. Then they send a reject message in
reply. Finally, 〈report,∞〉 messages flow to the core edge st of the fragment and the
computation terminates.

4. Consider the Afek-Kutten-Yung self-stabilizing algorithm for computing a spanning
tree in an undirected network.

(a) Suppose that at the start of the algorithm, all processes declare themselves root.
Explain how this allows to simplify the algorithm. (8 pts)

Solution: Then all false roots are removed from the network straight away.
Therefore join requests are no longer needed, and the algorithm is reduced to: (1)
a nonroot that detects an inconsistency declares itself root, and (2) a root that
has a neighbor with a larger root value makes that neighbor its parent.

(b) Motivate why the resulting algorithm is not really self-stabilizing, in the sense
that it should be able to cope with e.g. arbitrary bit flips at the hardware level.

(8 pts)

Solution: A random error could at some point cause the introduction of a false
root at multiple processes in the network concurrently. Then the scenarios that
show the need for join requests apply, as without join requests the algorithm may
not stabilize with a spanning tree. But the processes would be unaware of this
and the false root could survive, because only at the start of an execution the
processes declare themselves root.

5. Consider the time stamp approach to distributed transactions. Two transactions T1

and T2 run concurrently, with time stamps t1 and t2, respectively. Let variable x

3



initially contain the value e 10. T1 writes the value e 30 to x and then reads x, while
T2 reads x and then increases its value by e 10.

(a) Explain for all possible interleavings of the events of T1 and T2 whether T1 and
T2 commit or abort. Distinguish two possible cases: t1 < t2 and t2 < t1. (8 pts)

Solution: Let t1 < t2. If the write of T1 happens after the read of T2, then T1

aborts at its write, because T2 read x and has a larger time stamp than T1. If the
write of T1 happens before the read of T2, then the read of T2 is delayed until T1

has committed, because T1 wrote to x and has a smaller time stamp than T2. In
all cases, T2 commits.

Let t2 < t1. If the write of T2 happens after the read of T1, then T2 aborts at its
write, because T1 read x and has a larger time stamp than T2. (If the write of T2

happens before the read of T1, the read of T1 is not delayed, because T1 wrote to
x previously.) In all cases, T1 commits.

(b) Explain why in the case t2 < t1, aborts by T2 are spurious. Propose an optimiza-
tion of the time stamp approach that avoids these aborts. (8 pts)

Solution: Since T1 writes to x before reading it, T1 is oblivious to the write to x
performed by T2.

Aborts of T2 can be avoided by labeling read operations by a process that wrote
to the same variable earlier. Such a read operation does not lead to an abort of
a transaction with a smaller time stamp that wants to write to the same variable
after this read operation.

6. (a) Consider the Winternitz signature scheme with k = 10 and ` = 3. Let 1011000001
be the hash of Alice’s message to Bob. Explain how Alice signs her message, taking
into account the checksum, and how Bob verifies this signature. (8 pts)

Solution: Two 0’s are padded at the left of the hash of the message, to make its
length divisible by 3. The binary representations of b1, b2, b3 and b4 are 001, 011,
000 and 001, respectively, so b1 = 1, b2 = 3, b3 = 0 and b4 = 1.

The checksum is (7−1)+(7−3)+(7−0)+(7−1) = 23. Its binary representation
is 10111. One 0 is padded at the left to make its length divisible by 3. This means
the binary representations of b5 and b6 are 010 and 111, so b5 = 2 and b6 = 7.

Alice generates large random numbers X1, X2, X3, X4, X5, X6.

Her public key is h(h7(X1) ‖h7(X2) ‖h7(X3) ‖h7(X4) ‖h7(X5) ‖h7(X6)).

Her signature is h(X1) ‖h3(X2) ‖X3 ‖h(X4) ‖h2(X5) ‖h7(X6).

Bob uses the hash of the message to compute b1, . . . , b6.

4



With regard to Alice’s signature, he applies h6 to h(X1), h4 to h3(X2), h7 to X3,
h6 to h(X4) and h5 to h2(X2) and leaves h7(X6) unchanged. Finally, he applies h
to the concatenation of these strings, compares the result to the public key, and
accepts Alice’s signature.

(b) Suppose the Winternitz signature from (a) is placed in the third leaf of a binary
Merkle tree of depth 4 and used by Alice in a Merkle signature of a message to
Bob. Explain what the signature looks like and how this signature is employed
by Bob to verify whether the public key is genuine. (8 pts)

Solution: Alice’s signature takes the form sig3 ‖Y3 ‖h(Y4) ‖H31 ‖H22 ‖H12 with
sig3 the signature and Y3 the public key from (a). Each H-values is the h-value
of the concatenation of the strings in the two children of the corresponding node
in the Merkle tree.

Bob applies h to Y3 to determine the value in the third leaf. Then he consecutively
computes H32 = h(h(Y3) ‖h(Y4)), H21 = h(H31 ‖H32), H11 = h(H21 ‖H22), and
H01 = h(H11 ‖H12). He compares the computed value of H01 with the Merkle
root.

After completing the exam, show your solutions to the camera before closing Proctorio.

After closing Proctorio, upload your solutions on Canvas, within 15 minutes.

5


