
Online Resit Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 1 July 2020, 18:30-22:00

By participating in this exam, I declare to understand that taking an online exam during this corona crisis
is an emergency measure to prevent study delays as much as possible. I know that fraud control will be
tightened and realize that a special appeal is being made to trust my integrity. With this statement, I
promise to:

• make this exam completely on my own,
• not share my solutions with other students, and
• make myself available for any oral explanation of my answers.

(The 7 exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Describe in detail a computation of Tarry’s algorithm on a complete, undirected net-
work of four processes in which a spanning tree is constructed that it not a depth-first
search tree. (12 pts)

Solution: Consider a complete network with processes p0, p1, p2, p3, where p0 is the
initiator. The token travels from p0 via p1 to p2, after which p1 has parent p0 and p2

has parent p1. Now, to build a spanning tree that is not a depth-first search tree, p2

sends the token through the frond edge to p0 (instead of to p3), and p0 sends the token
on to p3, which makes p0 its parent. Next, the token travels from p3 via p1 back to p3,
and then via p2 back to p3. (Alternatively, the token could first travel from p3 via p2

back to p3, and then via p1 back to p3.) Finally, p3 sends the token to its parent p0,
which sends the token to p2, which sends the token to its parent p1, which sends the
token to its parent p0, after which the computation terminates.

2. Consider the network depicted in example 8.2, whereby the initial sink tree is adapted
by changing the parent of r from p to s.

1



Explain in detail why no computation of the Merlin-Segall algorithm on this adapted
network computes the correct distance values in one round. (12 pts)

Solution: In round one, q only sends distance messages when it has received a message
from its parent r. In turn, r sends messages only when it has receiced a message from
its parent s. And in turn, s only sends messages when it has received a message from
its parent p. So inevitably, s will receive a message from its parent p before it gets a
message from q, meaning that inevitably s sends a suboptimal distance value to r in
round one.

3. Give one possible computation of the Gallager-Humblet-Spira algorithm on the undi-
rected network below to determine a minimum spanning tree.

Note that three channels have the same weight. To avoid deadlock, we define an
ordering on these channels: pq < pr < qr.

During the computation, the handling of test messages from r and t and of a connect
message from r should be delayed at p. (20 pts)

2



Solution: Since channel weights are not unique, we use channel IDs for fragment
names instead.

q and t change channel qt from basic to branch and send 〈connect, 0〉 to each other.
Moreover, p changes channel pq from basic to branch (because pq < pr) and sends
〈connect, 0〉 to q. Moreover, r and s change channel rs from basic to branch and send
〈connect, 0〉 to each other.

q and t receive each other’s connect messages and merge into one fragment with
name qt and level 1 by sending 〈initiate, qt, 1, find〉 to each other. Next, q receives p’s
connect message and sends 〈initiate, qt, 1, find〉 to p. Moreover, r and s receive each
other’s connect messages and merge into one fragment with name rs and level 1 by
sending 〈initiate, rs, 1, find〉 to each other.

q and t receive each other’s initiate messages and send 〈test, qt, 1〉 to r and p, respec-
tively. Moreover, r and s receive each other’s initiate messages and send 〈test, rs, 1〉
to p and t, respectively.

r and t receive the test messages from q and s, respectively, and reply with accept.
Moreover, p receives the test messages from t and r and postpones replying to these
messages, because the test messages are at level 1 while p is at level 0.

p receives q’s initiate message and joins the fragment with name qt and level 1. Now
p can reply to the test messages from t and r with reject and accept, respectively.
When t receives p’s reject, it sends 〈test, qt, 1〉 to s, which replies with accept. More-
over, p sends 〈test, qt, 1〉 to r, which replies with accept.

r and s receive the accept from p and t, respectively, and send 〈report, 3, pr〉 and
〈report, 5〉 to each other. As a result, r sends 〈connect, 1〉 to p, which postpones
replying to this message because both the connect message and p are at level 1.

p sends 〈report, 3, pr〉 to q, which next sends 〈report, 3, pr〉 to t, while t sends
〈report, 5〉 to q. As a result, s sends 〈changeroot〉 to p, which then sends 〈connect, 1〉
to r.

Since p and r have sent 〈connect, 1〉 to each other, now they send 〈initiate, pr, 2, find〉
to each other. From p this message travels via q to t, and from r it travels on to s.

Finally, t and s send test messages to each other, leading to them to reject st, and
likewise q and r send test messages to each other, leading to them to reject qr. So
〈report,∞〉 messages flow to the core edge pr of the fragment and the computation
terminates.

4. Explain why the rotating coordinator crash consensus algorithm may not terminate if
it employs an incomplete, strongly accurate failure detector. (12 pts)

3



Solution: Let a process crash before the round in which it is the coordinator, but
let this process never be suspected to have crashed by the other processes. Then the
round in which the crashed process is the coordinator will never complete.

5. In the voting phase of the two-phase commit protocol, why must participants in a
distributed transaction copy the tentative changes they made during the transaction
to stable storage right before and not right after sending yes to the coordinator?

(10 pts)

Solution: Else a participant could crash after voting yes but before copying its ten-
tative changes to stable storage, so that these tentative changes are lost in the crash.
If all participants in the distributed transaction happen to vote ye, so that the coordi-
nator decides to commit the transaction, after restarting the crashed participant, can’t
recover its tentative changes.

6. Give an example to show how in the Chord ring, a search for a file by a peer p may
overshoot its target due to an improper succ value at another peer q, resulting from a
recently joined peer s. Also explain how the peer r could act when it gets the request
that overshoot its target. (12 pts)

Solution: Let peer p at ID 0 in the ring search for a file with hash value 5, which is
located at peer r at ID 6 in the ring. Let peer q be at ID succp = 4 in the ring, so that
finger p[1] = finger p[2] = finger p[3] = q and let succq = 6. Peer p starts the search for
the file by contacting peer q, who relays the request to peer r. In the meantime, peer s
joins the ring at ID 5, finds that r is its successor, and obtains the file with hash value
5 from r. Now the request from q arrives at r, who no longer holds the requested file.

One possibility is that r next contacts s, since r knows that the file was transferred
to s. Another possibility is that r asks p to restart its query, because the stabilization
procedure will restore the proper succ values, so that the search will be successful in a
next attempt.

7. Consider the Winternitz signature scheme with k = 11 and ` = 3. Let 01101010011 be
the hash of Alice’s message to Bob. Explain how Alice signs her message, taking into
account the checksum, and how Bob verifies this signature. (12 pts)

Solution: k = 11 and ` = 3, so n = 4.

4



One 0 is padded at the left of the hash 01101010011 of Alice’s message. The 4 binary
substrings of length 3 that constitute the resulting string, i.e., 001, 101, 010 and 011,
are binary representations of the numbers 1, 5, 2 and 3, respectively.

Alice computes as checksum (7−1)+(7−5)+(7−2)+(7−3) = 17, which has as binary
representation 10001. One 0 is padded at the left to make the length of this string
divisible by 3. The 2 binary substrings of length 3 that constitute the resulting string,
i.e., 010 and 001, are binary representations of the numbers 2 and 1, respectively.

Alice generates a private key of 6 random numbers X1 ‖X2 ‖X3 ‖X4 ‖X5 ‖X6 and pub-
lishes the corresponding public key h(h7(X1) ‖h7(X2) ‖h7(X3) ‖h7(X4) ‖h7(X5) ‖h7(X6)).
She signs her message with h(X1) ‖h5(X2) ‖h2(X3) ‖h3(X4) ‖h2(X5) ‖h(X6).

To verify the signature, Bob computes the hash of the message and the checksum,
thus determining the sequence of numbers 1, 5, 2, 3, 2, 1. He applies h6 to h(X1), h2 to
h5(X2), h5 to h2(X3), h4 to h3(X4), h5 to h2(X5), and h6 to h(X6). Finally, he applies
h to the concatenation of the 6 resulting strings and checks that the outcome coincides
with Alice’s public key.

5


