
Online Exam Distributed Algorithms

Vrije Universiteit Amsterdam, 27 May 2020, 8:30-12:00

By participating in this exam, I declare to understand that taking an online exam during this corona crisis
is an emergency measure to prevent study delays as much as possible. I know that fraud control will be
tightened and realize that a special appeal is being made to trust my integrity. With this statement, I
promise to:

• make this exam completely on my own,
• not share my solutions with other students, and
• make myself available for any oral explanation of my answers.

(The 7 exercises in this exam sum up to 90 points; each student gets 10 points bonus.)

1. Compute the vector clock values of the send and receive events and the decide event in
an execution of the echo algorithm on an undirected ring of three processes, in which
a spanning tree of depth 2 is constructed. (12 pts)

Solution: Consider a ring with processes p, q, r, where p is the initiator. The com-
putation of the echo algorithm is started by p, which sends messages to q and r, with
vector times (1, 0, 0) and (2, 0, 0), respectively. The first of these messages is received
by q, with vector time (1, 1, 0), and q makes p its parent. Next, q sends a message to r,
with vector time (1, 2, 0). To construct a spanning tree of depth 2, we let the message
from q arrive at r first (i.e., before the message from p), with vector time (1, 2, 1), so
that r makes q its parent. Next, r sends a message to p, with vector value (1, 2, 2).
This message is received by p, with vector time (3, 2, 2). Finally, the message from p
arrives at r, with vector time (2, 2, 3). As a result, r sends a message to its parent q,
with vector time (2, 2, 4). This message is received by q, with vector time (2, 3, 4). As
a result, q sends a message to its parent p, with vector time (2, 4, 4). This message
is received by p, with vector time (4, 4, 4). The computation is concluded by a decide
event by p, with vector time (5, 4, 4).

2. Consider the Merlin-Segall algorithm with topology changes. Suppose a new channel
pq becomes operational. How can processes p and q together determine whether this
channel is part of a shortest path toward the initiator, and how could they act if this
is the case? (10 pts)

Solution: Processes p and q can send their distance values to each other through the
new channel. If dist q + weight(pq) < distp or distp + weight(pq) < dist q, then p or q
concludes that it now has a shorter distance to the initiator through the new channel.

1



If this the case, p or q can inform the initiator through the sink tree that it should start
a new run of the Merlin-Segall algorithm. Alternatively, if e.g. p finds an improved
route toward the initiator through the new channel, it can change its distance value
to dist q + weight(pq) and its parent to q, after which it informs its neighbors except q
of its improved distance value, which may then lead to a cascade of improved distance
values at other processes a la the Chandy-Misra algorithm.

3. Explain where the proof of Theorem 12.1 in the textbook, that there is no (always
correctly terminating) algorithm for 1-crash consensus, breaks down in the presence of
an eventually weakly accurate failure detector. (16 pts)

Solution: Consider the second case in the proof of theorem 12.1, where the transitions
γ → γ0 and γ → γ1 correspond to events at the same process p. If p is from some
point in time on never suspected by the other processes, then the other processes need
not be 0-potent or 1-potent to achieve consensus.

For example, consider the Chandra-Toueg consensus algorithm. When the coordinator
of a round is never going to be suspected, all processes are forced to wait for the
coordinator’s message in that round. So the processes without the coordinator are
from that point on not 0- or 1-potent.

4. The picture below shows the time line of events at three processes p0, p1, and p2 with
regard to some basic computation, where real time progresses from left to right.

Explain in detail how the three processes roll back to a consistent configuration in the
past using the Peterson-Kearns algorithm. (12 pts)

Solution: Let the sequence number initially be 0; all basic messages carry this number.
After p0 has crashed, it restarts from its last checkpoint with sequence number 1,

2



replays the receipt of m1 from its message log, and reconstructs the send of m2 (without
actually sending it). Let the message log have vector time (k0, k1, k2). Then p0 sends
control messages to p1 and p2, containing the vector time (k0, k1, k2), its index 0, and
sequence number 1. Upon receipt of this message, p1 and p2 start a run of the rollback
procedure with sequence number 1; they store k0 paired with index 0 and sequence
number 1. No event needs to be rolled back at p1, but m5 needs to be resent (with
sequence number 0) because the vector time of its send event is not smaller than
(k0, k1, k2). Since the original instance of m5 is received by p0 after it resumed its
execution, it will receive this message twice; the second received instance of m5 is
discarded. Because of the receipt of m4, the vector time at p2 carries a value greater
than k0 at index 0. So p2 restarts at its last checkpoint (not shown in the picture) and
reconstructs events. This replay halts right before the receipt of m4. Message m3 is
resent by p2 because the vector time of its send event is not smaller than (k0, k1, k2).
Since the original receive event of m3 was lost in the crash, p0 will include the receipt
of this second instance of m3 during its resumed execution. When m6 and m7 reach
p0 and p1, respectively, they are discarded as orphan messages, because their sequence
number is 0, while the vector time of their send event carries a value greater than k0

at index 0. Note that m8 is sent by p0 after it resumed execution, so the receive of m8

at p1 and also the send and receive of m9 at p1 and p2, which carry sequence number
1, are not rolled back.

5. In the time stamp ordering approach for transactions, suppose transaction T1 wants
to perform a write on a variable, but finds that another ongoing transaction T2 that
comes later in the serialization order read this same variable. Explain why it would be
a bad idea, instead of aborting T1 immediately, to let T1 wait to see whether T2 will
maybe abort, in which case T1 could still perform the write. (12 pts)

Solution: The transaction T2 may want to read another variable on which transaction
T1 has already performed a write. Then T2 is waiting for T1 to commit or abort.
Moreover, T2 can only commit when T1 has completed. For both these reasons, letting
T1 wait for T2 to commit or abort would create a deadlock situation.

6. Sketch how the AODV protocol can be adopted to allow a peer to look for multiple
minimum-hop paths to different destinations with the broadcast of a single RREQ
message. (16 pts)

Solution: Let an RREQ arrive at a peer r with hop count h, where r doesn’t have an
active route to p with a more recent sequence number than snp, or with the sequence
number snp and a distance value d ≤ h. If r doesn’t have an active route to one or
more destinations in the RREQ, then it broadcasts the currently received RREQ, with

3



the hop count increased by 1, including only those destinations in the RREQ to which
it doesn’t have an active route. If on the other hand r does know an active route
to one or more destinations qi1 , . . . , qik in the RREQ, then it answers with an RREP,
which contains the IDs of p and qi1 , . . . , qik , the overall distance of each route to the k
destinations, and the sequence number of each route, originating from qi1 , . . . , qik . In
particular, if r = qi for some i, then the RREP is provided with the sequence number
of r, which is then increased by 1. Suppose a peer s receives such an RREP. For each
destination qi that in the message carries a more recent sequence number than s’s
current route to qi, or the same sequence number and yielding a shorter route to qi, s
updates its routing information to qi. If s isn’t p and updated its routing information
by the received RREP, then s forwards this RREP toward p, preserving only those
(one or more) destinations qi’s, and the corresponding information (overall distance of
the route, sequence number), for which s updated its routing information.

7. Consider the Merkle signature scheme.

(a) Suppose an attacker manages to store the entire Merkle tree in memory. Explain
why this does not seriously jeopardize the corresponding one-time signatures.

(7 pts)

Solution: To build a forged one-time public key that can replace a genuine public
key Yi, the attacker would have to find a value Z that is in line not only with the
corresponding one-time signature, but also with the Merkle root, meaning that
replacing h(Yi) by h(Z) in the Merkle tree should give rise to the same Merkle
root as in the original Merkle tree. By preimage resistance of the cryptographic
hash function h, this is extremely difficult.

(b) Why is it still not a good idea to publish the entire Merkle tree, relieving Alice from
the duty to provide authentication values to Bob in her corresponding signatures?
Give two reasons. (5 pts)

Solution: First and foremost, this would put a huge strain on memory resources,
as the size of the Merkle tree grows exponentially with its depth.

Second, attackers should be provided with as little information as possible that
can aid them in forging signatures. So although attackers will have a very hard
time abusing information in the Merkle tree, it is still better to publish the values
in its nodes piecemeal when needed.

4


