Final Exam VU Amsterdam

XB_0008: Discrete Mathematics 22 December 2022 (15:30-17:30)

Please justify your answers! Even a correct answer without full explanation scores badly.

The use of books, lecture notes, calculators, etc. is not allowed.

Question 1. Consider the symmetric group S_8 .

- (a) Write $\sigma \in S_8$ as a product of disjoint cycles where $\sigma = (276534)(14)(18574)(28)(1537246)$.
- (b) Write $\sigma^{-3} = (\sigma^{-1})^3$ as a product of disjoint cycles where σ^{-1} is the inverse of σ .

Note: No explanation is necessary for final answers in parts (a)--(b) of this question.

Question 2. Show that for all $n \in \mathbb{Z}_{>0}$

$$\sum_{a+b+c+d=n} \binom{n}{a,b,c,d} (-1)^{a+b} x^c = \sum_{k=0}^n \binom{n}{k} (-1)^k x^{n-k}.$$

Question 3. Consider the symmetric group S_6 with the identity element denoted by e. Determine the number of permutations $\pi \in S_6$ such that $\pi^6 = e$ and π is either a 6-cycle or can be written as a disjoint product of a 3-cycle and at least one other (nontrivial) cycle.

Question 4. Show that the number of permutations on n objects that contain exactly one cycle of length 1 is given by

$$n! \sum_{k=0}^{n-1} \frac{(-1)^k}{k!}$$
.

Note: You are expected to derive this formula and verify each step in your argument. Note that you are $\underline{\text{not}}$ allowed to use the derangement formula directly without giving an explicit proof.

Question 5. Let $a_0 = 5$ and consider the recurrence relation $a_k = a_{k-1} + 2k$ for $k \in \mathbb{Z}_{>0}$.

(a) Show that the generating function G(x) for the sequence $\{a_k\}$ satisfies

$$G(x) = \frac{5}{1-x} + \frac{2x}{(1-x)^3}.$$

(b) Determine a (simple closed) formula for a_k ($k \in \mathbb{Z}_{>0}$).

Note: You may use the equality given in (a) above for answering (b).

Question 6. (a) Write down the elements of the cyclic group C_8 as a product of disjoint cycles.

(b) How many ways are there to colour the vertices of an octagon (i.e. a regular 8-sided polygon) if k different colours are available, where k is a positive integer, discounting (planar) rotational symmetries?

\mathbf{per}	subitem
	\mathbf{per}

1a: 5	2: 10	3: 12	4: 18	5a: 10	6a: 5		
1b: 5				5b: 10	6b: 15		

Maximum Total = 90

Mark = 1 + (Total/10)