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Discrete Mathematics - Final exam 2022: Solutions

(a) We have o = (276534)(14)(18574)(28)(1537246) = (16873)(45).
(b) We have 03 = (0~1)% = ((16873)~1(45)~1)3 = (13786)3(45)® = (18367)(45).
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The number of 6-cycles in Sg is %’ = 5! = 120. If 7w is a product of a 3-cycle and another

disjoint cycle, then 7 is either a product of two disjoint 3-cycles or a disjoint product
of a 3-cycle and a 2-cycle. In the former, there are % = 40 and in the latter

6'55# = 120 such permutations. In total there are 120 4+ 40 + 120 = 280 such .

Having a cycle of length 1 means a fixed position for a permutation. Let 7w be a per-
mutation such that 7(k) = k and 7(i) # i for i« # k. Then 7 is a derangement of
n — 1 elements. The total number of such a 7, i.e. the derangement of a set of n — 1
elements, is given by (n — 1)j. If we run k through 1,... n, we obtain the total number
of permutations that contain exactly one cycle is n(n — 1);.

Let us compute (n — 1)j. We have N = (n — 1)!. Let a; be the property “m(i) = i”,
a;a; be the property “m(i) = ¢ and 7(j) = 57, and so on. Then N(a;) = (n — 2)!,
N(a;aj) = (n — 3)!, and so on. By the principle of inclusion and exclusion,
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and thus (n—1)j = (n—1)! > (_k1!)k . Hence the total number of permutations containing
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(5) (a) For the recurrence relation ay = ay_1 + 2k for k € Z* and with the initial condition
ap = b, the generating function is given by

G(z) = Z apzr® = ag + Z apx”
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(b) The geometric series is given by > 2% = ﬁ and by differentiating we obtain
k>0
S katt = (ljx)2 and > k(k —1)zF2 = ﬁ Therefore,
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. Since 2= =5 2%, we have
k>0

G(z) =53 "+ k(k+1)a* =) [5+k(k + 1)]a*
E>0 k>0 E>0
and thus a, =5+ k(k + 1) for k € Z=°

(6) (a) We have Cg = (o) = {o™ : m € Z="}, where o = (12345678). Thus, we obtain
Cs = {e, (12345678), (1357)(2468), (14725836), (15)(37)(26) (48), (16385274), (1753)(2864), (18765432)}

(b) We have |G| = |Cs] = 8 and by Burnside’s lemma, N = # orbits = ‘—(1;| > Cx
TeG
Since |Cy] = k%, |Cy] = |Cys| = |Cyps| = |Cyr| = k, |Cy2| = |Chs] = k* and

8 2 4
|Cpa| = k*. Thus N = Ftaki2hth



