Discrete Mathematics - Final exam 2022: Solutions

(1) (a) We have
$$\sigma = (276534)(14)(18574)(28)(1537246) = (16873)(45)$$
.

(b) We have
$$\sigma^{-3} = (\sigma^{-1})^3 = ((16873)^{-1}(45)^{-1})^3 = (13786)^3(45)^3 = (18367)(45)$$
.

(2)

$$\sum_{a+b+c+d=n} \binom{n}{a,b,c,d} (-1)^{a+b} x^c = \sum_{a+b+c+d=n} \binom{n}{a,b,c,d} (-1)^a (-1)^b x^c 1^d$$

$$\stackrel{\textit{multinomial theorem}}{=} (-1 - 1 + x + 1)^n = (x - 1)^n$$

$$\stackrel{\textit{binomial theorem}}{=} \sum_{k=0}^n \binom{n}{k} (-1)^k x^{n-k}.$$

- (3) The number of 6-cycles in S_6 is $\frac{6!}{6} = 5! = 120$. If π is a product of a 3-cycle and another disjoint cycle, then π is either a product of two disjoint 3-cycles or a disjoint product of a 3-cycle and a 2-cycle. In the former, there are $\frac{6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{3\cdot 3\cdot 2} = 40$ and in the latter $\frac{6\cdot 5\cdot 4\cdot 3\cdot 2}{3\cdot 2} = 120$ such permutations. In total there are 120 + 40 + 120 = 280 such π .
- (4) Having a cycle of length 1 means a fixed position for a permutation. Let π be a permutation such that $\pi(k) = k$ and $\pi(i) \neq i$ for $i \neq k$. Then π is a derangement of n-1 elements. The total number of such a π , i.e. the derangement of a set of n-1 elements, is given by $(n-1)_i$. If we run k through $1, \ldots, n$, we obtain the total number of permutations that contain exactly one cycle is $n(n-1)_i$.

Let us compute (n-1). We have N = (n-1). Let a_i be the property " $\pi(i) = i$ ", $a_i a_j$ be the property " $\pi(i) = i$ and $\pi(j) = j$ ", and so on. Then $N(a_i) = (n-2)!$, $N(a_i a_j) = (n-3)!$, and so on. By the principle of inclusion and exclusion,

$$(n-1)_{\mathbf{i}} \stackrel{3}{=} N - \sum_{i=1}^{n-1} N(a_i) + \sum_{1 \le i < j \le n-1} N(a_i a_j) - \dots + (-1)^r \sum_{1 \le i_1 < \dots < i_r \le n-1} N(a_{i_1} \dots a_{i_r}) \dots + (-1)^{n-1} N(a_1 \dots a_{n-1})$$

$$\stackrel{2}{=} (n-1)! - \sum_{i=1}^{n-1} (n-1)! + \sum_{1 \le i < j \le n-1} (n-3)! - \dots + (-1)^r \sum_{1 \le i_1 < \dots < i_r \le n-1} (n-r-1)! \dots + (-1)^{n-1}$$

$$\stackrel{2}{=} (n-1)! - \binom{n-1}{1} (n-2)! + \binom{n-1}{2} (n-3)! - \dots + (-1)^r \binom{n-1}{r} (n-r-1)! + \dots + (-1)^{n-1} \binom{n-1}{n-1}$$

$$\stackrel{1}{=} \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} (n-k-1)! = \sum_{k=0}^{n-1} (-1)^k \frac{(n-1)!}{k!(n-k-1)!} (n-k-1)!$$

and thus $(n-1)_{\mathbf{i}} = (n-1)! \sum_{k=0}^{n-1} \frac{(-1)^k}{k!}$. Hence the total number of permutations containing exactly one cycle of length 1 is given by $n(n-1)_{\mathbf{i}} = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$.

(5) (a) For the recurrence relation $a_k = a_{k-1} + 2k$ for $k \in \mathbb{Z}^+$ and with the initial condition $a_0 = 5$, the generating function is given by

$$G(x) = \sum_{k \ge 0} a_k x^k = a_0 + \sum_{k \ge 1} a_k x^k$$

$$= 5 + \sum_{k \ge 1} a_{k-1} x^k + \sum_{k \ge 1} 2k x^k$$

$$= 5 + x \sum_{k \ge 0} a_k x^k + 2x \sum_{k \ge 0} k x^{k-1}$$

$$= 5 + x G(x) + \frac{2x}{(1-x)^2}$$

$$(1-x)G(x) = 5 + \frac{2x}{(1-x)^2}$$

$$G(x) = \frac{5}{1-x} + \frac{2x}{(1-x)^3}$$

(b) The geometric series is given by $\sum_{k\geq 0} x^k = \frac{1}{1-x}$ and by differentiating we obtain $\sum_{k\geq 1} kx^{k-1} = \frac{1}{(1-x)^2}$ and $\sum_{k\geq 2} k(k-1)x^{k-2} = \frac{2}{(1-x)^3}$. Therefore,

$$\frac{2x}{(1-x)^3} = \sum_{k\geq 2} k(k-1)x^{k-1} = \sum_{k\geq 1} (k+1)kx^k = \sum_{k\geq 0} k(k+1)x^k$$

. Since $\frac{5}{1-x} = 5 \sum_{k>0} x^k$, we have

$$G(x) = 5\sum_{k\geq 0} x^k + \sum_{k\geq 0} k(k+1)x^k = \sum_{k\geq 0} [5 + k(k+1)]x^k$$

and thus $a_k = 5 + k(k+1)$ for $k \in \mathbb{Z}^{\geq 0}$

- (6) (a) We have $C_8 = \langle \sigma \rangle = \{ \sigma^m : m \in \mathbb{Z}^{\geq 0} \}$, where $\sigma = (12345678)$. Thus, we obtain $C_8 = \{ e, (12345678), (1357)(2468), (14725836), (15)(37)(26)(48), (16385274), (1753)(2864), (18765432) \}$
 - (b) We have $|G| = |C_8| = 8$ and by Burnside's lemma, $N = \# \text{ orbits } = \frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}|$. Since $|C_1| = k^8$, $|C_{\sigma}| = |C_{\sigma^3}| = |C_{\sigma^5}| = |C_{\sigma^7}| = k$, $|C_{\sigma^2}| = |C_{\sigma^6}| = k^2$ and $|C_{\sigma^4}| = k^4$. Thus $N = \frac{k^8 + 4k + 2k^2 + k^4}{8}$.