Please justify your answers! Even a correct answer without full explanation scores badly.

The use of books, lecture notes, calculators, etc. is not allowed.

Question 1. Consider the graphs G (below left) and H (below right) given in the following figure.

- (a) Does G contain an Eulerian trail? Either give an Eulerian trail in G, or prove that such a trail does not exist.
- (b) Is G bipartite? Either give a bipartite partition of the vertices of G or show that such a partition does not exist.
- (c) Determine the chromatic number $\chi(G)$ of G. Prove your assertion.
- (d) Find an edge cover of G consisting of seven vertices.
- (e) Determine whether G and H are isomorphic graphs. Prove your assertion.

Question 2. (a) Draw a labelled tree with Prüfer sequence 3, 4, 2, 2, 2, 3. Describe your steps.

(b) Use Kruskal's algorithm to determine a minimum weight spanning tree of the weighted graph given in the figure below, and compute the total weight of that tree. Describe your steps.

Question 3. Let G be a connected planar bipartite graph with n vertices, q edges, and r regions/faces (in any planar representation). Suppose G does not contain any cycle of length smaller than 7 and has a region bounded by 10 edges and a region bounded by 12 edges.

- (a) Show that $q \ge 4r + 3$.
- (b) Show that $4n \geq 3q + 11$.

Note: You may use the inequality given in (a) above for answering (b).

Question 4. Let G be a graph of order n. Suppose G has q edges and c connected components. Prove that $q + c \ge n$.

Hint: Assume first G is connected and consider a spanning tree.

Question 5. Suppose G is a 4-regular graph. Prove that we can colour the <u>edges</u> of G using two colours such that every vertex is incident with two edges of each colour.

Hint: Is G Eulerian?

Maximum score per subitem

1a: 4	2a: 8	3a:12	4: 18	5: 16
1b: 4	2b:10	3b:6		
1c: 4				
1d: 4				
1e: 4				

Maximum Total = 90Mark = 1 + (Total/10)