Retake exam Differentiëren en Integreren 3

11 June 2015

- This exam consists of 6 questions on 2 pages.
- The total number of points is **45**.
- Grade = $\frac{\text{Total}}{5} + 1$.
- You have 120 minutes to write the exam.
- Always motivate your answers and write clearly. Please write all answers in English.
- Books, calculators, laptops, smartphones, etc. are not allowed.
- 1. (5 points) Evaluate the double integral

$$\int_0^2 dy \int_y^2 e^{-x^2} \, dx.$$

2. (3+5 points) Let the function ϕ given by

$$\phi(x, y, z) = \frac{x^3}{3} + x^2 z^2 - 4xyz,$$

and the curve \mathcal{C} parametrized by $\mathbf{r}(t) = (t, e^{-t}, e^t)$, for $t \in [0, 1]$.

(a) Find $\mathbf{G} = \nabla \phi$. Is \mathbf{G} solenoidal?

Consider the vector field \mathbf{F} in \mathbb{R}^3 given by

$$\mathbf{F}(x, y, z) = (x^2 + 2xz^2)\mathbf{i} - 4xz\mathbf{j} + (2x^2z - 4xy)\mathbf{k},$$

(b) Find
$$\int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$$
. [*Hint*: use (a)]

3. (7 points) Use the transformation $u(x,y) = x^2 + y^2$, $v(x,y) = \frac{y}{x}$ to evaluate the double integral

$$\iint_D \frac{y^2 + x^2}{x^2} \, dA,$$

where D is the region in the first quadrant under the line y = 2x and between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 5$.

4. (5 points) Evaluate the line integral

$$\oint_{\mathcal{C}} xy^3 \, dx + 4x \, dy,$$

where $\mathcal C$ is the boundary of the rectangle $R=[2,3]\times [0,1]$ oriented clockwise.

- **5.** (5+8 points) Consider the region D bounded by the surface $z=x^2+y^2$ (top), the xy-plane (bottom), and the four planes x=-1, x=1, y=-1, y=1 (side). Denote the boundary of D by S. Let S_1 , S_2 and S_3 be the top, bottom, and side part of S, with oriented boundaries C_1 , C_2 and C_3 , respectively. Let $\mathbf{F}(x,y,z)=z\,\mathbf{i}-y\,\mathbf{j}+x^2\,\mathbf{k}$.
 - (a) Consider two vector fields \mathbf{F} and $\operatorname{curl} \mathbf{F}$. The divergence theorem and Stokes's theorem allow to express flux integrals of these vector fields across certain surfaces as triple or line integrals. Choose S or S_3 for each of the vector fields and state the assertion of the corresponding theorem. Motivate your answer. [Note: You do not have to evaluate the integrals.]
 - (b) Find the upward flux of \mathbf{F} across \mathcal{S}_1 directly, i.e., without applying any of the three theorems of vector calculus.
- 6. (7 points) Evaluate the surface integral

$$\iint_{\mathbb{S}} \frac{z + 2y^2}{\sqrt{1 + 4x^2 + 4y^2}} \, dS,$$

where S is the part of the surface $x^2 - y^2 - z = 4$ that lies inside the cylinder $x^2 + y^2 = 1$.

Good luck!