Final exam Differentiëren en Integreren 3

25 March 2015

- This exam consists of **5** questions.
- The total number of points is **36**.
- Grade = $\frac{\text{Total}}{4} + 1$.
- You have 120 minutes to write the exam.
- Always motivate your answers and write clearly. Please write all answers in English.
- Books, calculators, laptops, smartphones, etc. are not allowed.
- 1. (4 points) Evaluate the line integral

$$\oint_{\mathcal{C}} (2x^2y - \sin x^2) \, dx + (x^3 + xy^2 + \tan y^3) \, dy,$$

where \mathcal{C} is the boundary of the half-disk $x^2 + y^2 \leq 1$, $y \geq 0$ oriented counterclockwise.

2. (8 points) Consider two vector fields in \mathbb{R}^3

$$\mathbf{F}(x, y, z) = (2xy + z)\mathbf{i} + (x^2 + 3y^2z^2)\mathbf{j} + (2zy^3 + x)\mathbf{k},$$

$$\mathbf{G}(x, y, z) = (xy^2z + x^2\sin z)\mathbf{i} - \frac{y^3z}{3}\mathbf{j} + (2x\cos z - y)\mathbf{k}.$$

Show that F is irrotational and G is solenoidal.

3. (6 points) Use Stokes's theorem to find the circulation of the vector field

$$\mathbf{F}(x, y, z) = (y^2 + 2xy - 3y)\mathbf{i} + (x^2 + 2xy)\mathbf{j} + \sin z\mathbf{k}$$

around the curve \mathcal{C} of intersection of the surfaces $z=2y^2+1,\ x=2,\ x=3,\ y=-2,$ and y=3, oriented counterclockwise as seen from a point high on the z-axis.

4. (6 points) Find the area of the surface S parametrized by

$$\mathbf{r}(u,v) = 2u\cos v\,\mathbf{i} + u\sin v\,\mathbf{j} + (4 - u\cos v - u\sin v)\,\mathbf{k}, \qquad 0 \le u \le 2, \quad 0 \le v \le 2\pi.$$

5. (6+6 points) Let S be the boundary of the region bounded by $z = 4 - x^2 - y^2$ and z = 0. Consider the vector field

$$\mathbf{F}(x, y, z) = (xz\sin(yz) + x^3)\mathbf{i} + \cos(yz)\mathbf{j} + (3zy^2 - 1)\mathbf{k}.$$

(a) Find the outward flux

$$\iint_{\mathbb{S}} \mathbf{F} \bullet \hat{\mathbf{N}} \, dS.$$

(b) Let S_1 be the piece of the paraboloid $z = 4 - x^2 - y^2$ above the xy-plane, i.e. the upper part of the surface S. Use above result to find the upward flux across the surface S_1 .