FINAL EXAM FOR DIFFERENTIAL GEOMETRY, FALL 2014

Time: 15:15-18:00 - Books, notes, calculator, etc. are not permitted!

Use for each of the 3 exercises a separate piece of paper!

Do not forget to write your name and student number (UvA/VU) on all papers!

Grading: your grade = 1/3 times your points

Exercise 1

- a) How is the differential of a smooth map $f: M \to N$ at a point $p \in M$ defined? When is f called an immersion? And is the image $f(M) \subset N$ of an immersion f a submanifold of N? (3P)
- b) Let \mathbb{R} be the real line with its usual manifold structure. Let M denote the manifold which equals \mathbb{R} as a set but with the manifold structure given by the coordinate chart $\phi: \mathbb{R} \to M, \ x \mapsto x^3$. Show that the identity map $\mathbb{R} \to M$ is a homeomorphism, but not a diffeomorphism. Are M and \mathbb{R} diffeomorphic? (3P)
- c) Show that $SL(2) := \{A \in \mathbb{R}^{2 \times 2} : \det(A) = 1\}$ is a submanifold of \mathbb{R}^4 . What is its dimension ? (3P)

Exercise 2

- a) What is a Riemannian metric on a smooth manifold M? Does there always exist a Riemannian metric on any submanifold of \mathbb{R}^n ? (3P)
- b) Give two ways how to define the topology of a manifold M equipped with a Riemannian metric g. (3P)
- c) Compute the Lie bracket of the vector fields $X(x) = (-x_2, x_1, 0)$ and $Y(x) = (x_1x_3, x_2x_3, -x_1^2 x_2^2)$ on $S^2 \subset \mathbb{R}^3$, where (x_1, x_2, x_3) are the coordinates on \mathbb{R}^3 . What can be said about the flows of X and Y? (3P)
- d) Let \mathfrak{g} be the Lie algebra of a Lie group G and for each $\xi \in \mathfrak{g}$ let ϕ_t^{ξ} denote the flow of the corresponding left-invariant vector field. Show that the map $\exp : \mathfrak{g} \to G$, $\xi \mapsto \phi_1^{\xi}(e)$ maps an open neighborhood of 0 in \mathfrak{g} diffeomorphically to an open neighborhood of the neutral element e in G. (3P)

Exercise 3

- a) Explain the relation between the exterior derivative and divergence and curl of a vector field on $M = \mathbb{R}^3$. (3P)
- b) Compute step by step how a two-form $\omega = f(x_1, x_2) dx_1 \wedge dx_2$ on \mathbb{R}^2 changes under a coordinate transformation $\phi : \mathbb{R}^2 \to \mathbb{R}^2$, $(y_1, y_2) \mapsto (x_1, x_2)$. Explain the application to integration on (two-dimensional) manifolds. (3P)
- c) Show that the one-form $\omega = (x_1 dx_2 x_2 dx_1)/(x_1^2 + x_2^2)$ on $\mathbb{R}^2 \setminus \{0\}$ is closed, but not exact. (3P)