Student name;

Student number:

Faculteit der Exacte Wetenschappen

Exam Design of Multi-Agent Systems

Vrije Universiteit Amsterdam 22 October 2009
Exercise i 2 3 4 bonus

points 25 30 20 15 10

Norm:

The tentamination mark T equals (the sum of the points scored for the exercises

plus 10 bonus points) divided by 10.

The endmark ¥ for the course Design of Multi-Agent Systems is calculated as

follows: E=(T+H+P) /3

Where :
T = tentamination mark
H = mark for the home work exercises

P = mark for the small practicum

You find:

4 exercises
5 appendices (1A, 1B, 2, 3,4)
You can answer in Dutch as well as English

Student name: Student number:

Exercise 1 (25 points):

Relevant Appendices: Appendix 1A and Appendix 1B.
This exercise consists of two parts. Motivate your answers.

Exercise 1a (15 points)
In chapter 1 of the syllabus a number of primitive agent concepts have been introduced
(see Appendix 1B of the answer sheets). In Appendix 1A, you can find some information

on an intelligent system to improve medicine usage.

Analyse this information according to the primitive agent concepts and fill out Appendix
1B (3 answer sheets) indicating which agent concepts are relevant for the medicine usage
system. Remember to motivate your answers clearly.

Exercise 1b (10 points)
Would you call this system an agent? Motivate your answer.

Exercise 2 (30 points)
Relevant Appendix: Appendix 2.

This exercise concerns the building of an intelligent F16 opponent, and is explained in
Appendix 2.

Exercise 2a (15 points)
Give a graphical representation of the information types that you would use in the
intelligent F16 opponent agent.

Exercise Zb (15 points)
Use the information types you have identified above to specify rules of the knowledge
base needed for the intelligent F16 opponent agent.

Student name: Student number:

Exercise 3 (20 points):

Relevant Appendix: Appendix 3.

This question is about information states and reasoning. Study the partial specification of
Appendix 3. This is the public information state S of component wall_e:

S =] observation_result(at_position(self, p0), pos),
observation_result(at_position(self, p1), neg),
observation_result(at_position(self, p2), neg),
observation_result(at_position(plant, p1), pos),
observation_result(at_position(engine_oil, p2), pos)]

Exercise 3a (8 points)
Provide an information state S', that refines S and is also closed and consistent with
respect to the knowledge base of component wall_e.

Exercise 3b (4 points)
Motivate that S'is a refinement of S.

Exercise 3¢ (4 points)
Motivate that S' is closed with respect to the knowledge base of component wall_e.

Exercise 3d (4 points)
Motivate that S' is consistent with respect to the knowledge base of component wall_e.

Student name: Student number:

Exercise 4 (15 points):

Relevant Appendix: Appendix 4.

Consider the information type cars as shown in the Figure below. In Appendix 4 you can
find a table consisting of a number of strings. Which of these strings are terms
considering the information type cars? Which are atoms? And which are ground atoms?
Which of the terms are well formed? Which of the atoms are well formed? Fill in your
answer in the table in Appendix 4.

/ cars <has_horsepower)\

I INFO_ELEMENT |

@D / make_and_model /

MAKE

i

oe|jliped

Student name: Student number:

Appendix 1A: Intelligent Medicine Box System

Assisting humans in timely usage of their medicine can be crucial for their health. When
looking at HIV medicine, this medicine is very sensitive to irregular intake and needs to
be taken at strict times in order for the patient to stay healthy. To assist humans in taking
their medicine, the company called SimPill has decided to create an intelligent system
that supports humans in taking their medicine on a regular basis. The system
continuously monitors the medicine box of the patient to see whether medicine is taken
out of the box. In case the system notices that no medicine has been taken at the
appropriate time, the system can warn the user that he/she needs to take medicine.
Furthermore, the system can also give warnings in case the patient tries to take medicine
too early. If the system considers the patient insufficiently structured in its medicine
usage (which is derived by looking at the history of medicine intake), the system contacts
the doctor, and informs the doctor on the current medicine usage pattern of the patient.
The doctor can give the system input on what strategy the system should follow to
improve the patient’s intake behavior.

Student name:

Student number:

Appendix 1B:

Answersheet (1 out of 3)

I. External primitive concepts

A. Interaction with the world

passive observations

active observations

performing actions

B. Communication with other agents

incoming

outgoing

Student name:

Student number:

Appendix 1B

Answersheet (2 out of 3)

H.

Internal primitive concepts

A.

World Model

Agent Models

Self Model

. History

Goals

. Plans

. Group Concepls

Joint goals

Joint plans

Commitments

Negotiation strategies

Student name: Student number:

Appendix 1B Answersheet (3 out of 3)

III. Types of behaviour

Autonomy

Responsiveness

Pro-activeness

Social behaviour

Own adaptation and learning

Student name: Student number:

Appendix 2 Intelligent ¥16 Opponent

The fighter pilots of any air force need to be well trained. However, the cost of letting
such a pilot train in the air are very high. As a result, more and more often simulation
environments are being used. Ideally, these simulation environments would contain
enemies that act as one would expect of real world enemies: in an intelligent manner.
Therefore, the air force decides to develop an intelligent agent that can act as an opponent
within fighter pilot simulations, and can control a MIG, a well known Russian aircraft
often used as an opponent in training simulations.

In order to control the plane, the agent can receive a number of observations based upon
which it responds: it can see whether the F16 pilot has a radar lock on the MIG or not,
and it can also observe the opposite, namely whether it has a radar lock on the F16 pilot
or not. It can also be observed if the F16 pilot has fired a missile or not. Finally, the
distance can be observed: is the F16 plane relatively close or relatively far away. Based
upon this information, the agent can derive appropriate actions to undertake. In this case
several actions are possible, namely: (1) fire a missile; (2) perform a fancy maneuver; (3)
fire flares as a decoy, and (4) jump out of the plane.

Essentially the rules the agent uses are relatively simple. In case the other F16 pilot has a
radar lock, has fired a missile, and is relatively close by, the agent jumps out of the plane.
If the radar lock is observed, and also the fact that the missile has been fired, but the F16
pilot is relatively far away, the agent fires flares and performs a fancy maneuver. In case
a radar lock is present, but no missile has been fired, the agent performs a fancy
maneuver, and finally, if the agent itself has a radar lock upon the F16 pilot it always
fires a missile.

Student name:

/ domainactions \

[ACTION |

collect, _plaan -

| POSITION |

/

Student number:

In addition to these domain specific types, the generic types are shown in a textual format

below.

information type truth_indication
sorts SIGN ;
objects pos,
neg: SIGN;
end information type

information type observation_resuits

sorts v INFO_ELEMENT, SIGN ;
relations observation_result: INFO_ELEMENT * SIGN;

end information type

information type observation_result_info
information types truth_indication,
observation_results,
information_element_info;
end information type

information type actions_to_be_performed
soris ACTION ;
relations to_be_performed: ACTION;
end information type

information type action_info
information types actions_to_be_performed,
domain_actions;
end information type

12

Student name: Student number:

Appendix 3 Wall-E

3.1 Problem Description

In this case the problem concerns Wall-E, a robot sent out by humans to clean up a
planet, but also to discover life on the planet. Wall-E is in this case seen as an agent for
which a simple case of behaviour is represented below.

p1

Wall-E should always prioritize finding life above its own life. His own life is dependent
on having sufficient engine oil. In the simple case we address here there are three
positions in the world, namely p0, p1, and p2. Furthermore, three objects can be present,
namely a plant, Wall-E itself, and engine oil. Each of these three objects can be placed at
any of the positions. In the figure shown above, Wall-E is located at p0, the engine oil at
pl, and a plant at p2. Note that this is merely an example of a configuration.

A specification of Wall-E expression the knowledge needed for the simple three Jocations

world is expressed below.

~

10

Student name:

Student number:;

3.2 Information types

" The information types being used within the whole system are:

position info

domain objects

ginformation_element_info

domain positions

position info

INFO_ELEMENT

) ‘at_positiop g

POSITION

/

domain objects \ / domain positions \

OBJECT A |

POSITION

dornain actions domain positions

11

Student name: Student number:

3.3 Fragment of specification of the component

The component is primitive and is described shortly below.

The component wall_e

The interfaces are defined by:
input interface: the information type observation_result_info;
output interface: the information type action_info;

The contents of the knowledge base:

it
and
then

and
and
and
and
then

and
then

and
then

observation_result(at_position(plant, P:POSITION), pos)
observation_result(at_position(self, P:POSITION), neg)
to_be_performed(goto(P:POSITION)) ;

observation_result{at_position(plant, p0), neg)
observation_result(at_position(plant, p1), neg)
observation_result(at_position(plant, p2), neg)
observation_result(at_position(engine_oil, P:POSITION), pos)
observation_result(at_position(self, P:POSITION), neg)
to_be_performed(goto(P:POSITION)) ;

observation_result(at_position(self, P:POSITION), pos)
observation_resuit(at_position(plant, P:POSITION), pos)
to_be_performed(collect_plant) ;

observation_result(at_position(self, P:POSITION), pos)
observation_result(at_position(engine_oil, P:POSITION), pos)
to_be_performed(collect_oil) ;

13

Student name:

Student number:

Appendix 4: Answersheet for Exercise 4.

term

atom

ground
atom

well-formed

has_make

make_and_model(Focus, H:HORSE_POWER)

400

has_horsepower(make_and_model(Ford, Focus), 100)

H:HORSE_POWER

has_make(make_and_médel(Cadillac, Seville))

has_make(M:MAKE)

has_horsepower(Ford, 300)

has_make(has_horsepower(I:INFO_ELEMENT), 300)

14

