Exercises Database Normalization

1. Consider the relation R(A, B, C, D, E) together with the functional dependencies.

$$\begin{aligned} \mathsf{D} &\to \mathsf{A} \\ \mathsf{E} &\to \mathsf{A}, \mathsf{D} \\ \mathsf{C}, \mathsf{D} &\to \mathsf{A} \\ \mathsf{A}, \mathsf{E} &\to \mathsf{C} \\ \mathsf{B} &\to \mathsf{A}, \mathsf{D}, \mathsf{E} \end{aligned}$$

Compute a set of canonical (minimal dependencies).

Solution:

Make the right-hand sides singular:

$$\begin{array}{cccc} D \rightarrow A & & C, D \rightarrow A & & B \rightarrow A \\ E \rightarrow A & & A, E \rightarrow C & & B \rightarrow D \\ E \rightarrow D & & B \rightarrow E \end{array}$$

Minimise the left-hand sides:

1. Drop C from left-hand sides $C, D \rightarrow A$ since $D \rightarrow A$:

$$\begin{array}{cccc} D \rightarrow A & & D \rightarrow A & & B \rightarrow A \\ E \rightarrow A & & A, E \rightarrow C & & B \rightarrow D \\ E \rightarrow D & & B \rightarrow E \end{array}$$

2. Drop A from left-hand sides A, $E \rightarrow \dots$ since $E \rightarrow A$:

$$\begin{array}{cccc} D \rightarrow A & & D \rightarrow A & & B \rightarrow A \\ E \rightarrow A & & E \rightarrow C & & B \rightarrow D \\ E \rightarrow D & & B \rightarrow E \end{array}$$

3. Intermediate result is:

$$\mathsf{D} \to \mathsf{A}$$

$$\mathsf{E} o \mathsf{A}$$

$$B \rightarrow A$$

$$\mathsf{E} \to \mathsf{C}$$

$$B \rightarrow D$$

$$\mathsf{E} \to \mathsf{D}$$

$$B \rightarrow E$$

After removing implied FDs, the final result is:

$$\mathsf{D} \to \mathsf{A}$$

$$\mathsf{E} \to \mathsf{C}$$

$$B \rightarrow E$$

$$\mathsf{E}\to\mathsf{D}$$

2. Transform the relation in task 1 to BCNF using the synthesis algorithm.

Solution:

We already have a set of canonical FDs.

Maximising the right-hand sides yields:

$$\mathsf{D} \to \mathsf{A}$$

$$E \rightarrow A, C, D$$

$$E \rightarrow A, C, D$$
 $B \rightarrow A, C, D, E$

The only minimal keys is $\{B\}$.

We start with the schema $R(A, \underline{B}, C, D, E)$ and we split off violating FDs:

- 1. $R(A, \underline{B}, C, D, E)$
- 2. The dependency $D \rightarrow A$ violates BCNF, we split: $R(\underline{B}, C, D, E), R_2(\underline{D}, A)$
- 3. The dependency $E \rightarrow A$, C, D violates BCNF of R, we split: $R(\underline{B}, E), R_2(\underline{D}, A), R_3(\underline{E}, C, D)$

3. Transform the relation in task 1 to 3NF using the synthesis algorithm.

Solution:

We already have a set of canonical FDs:

$$\mathsf{D} \to \mathsf{A}$$

$$\mathsf{E} \to \mathsf{C}$$

$$B \rightarrow E$$

$$\mathsf{E}\to\mathsf{D}$$

We create relations by merging FDs with the same left-hand side (we do not maximise right-hand sides):

$$R_1(D, A)$$

$$R_2(E,C,D)$$

$$R_3(B, E)$$

Check 1: R₃ contains a key of the original relation. OK

Check 2: no relation is contained in another. OK.