
Note: The solutions in this document are only indicative. They may
be incomplete or even contain errors.

Practicum Solutions Data Modelling

Practicum/Homework Questions
1. Provide a conceptual database model in the form of a E/R Diagram. Include Entities,

Relationships, Attributes, Cardinalities, Primary Keys, Weak Entities (if present) etc.
Explain the important design decisions when facing ambiguity and document relevant
assumptions.

2. Give the associated relational schema, indicating relations R(A1,..) with their
attributes Ai, primary keys underlined, and foreign key relationships (→). Separately
also comment on NULLable attributes (if any).

Note: If you are drawing the diagrams on your computer, you may want to use a specialised
editor such as yEd (​https://www.yworks.com/yed-live/​), or, maybe easier to insert in Google
Drive, io.draw.

Practicum Scenario 1
You are asked to design the database for a ride sharing company, “HUBRIS”. The business
model is simple, there is an app that connects drivers with people in need of transport
(riders). Riders pay for rides through the app which allows the company to charge a service
fee on the paid amount. All the riders and drivers have a known name and a unique identifier
=> superclass “contact”​. For drivers, the model of car and their license plate is also known
to the company. For riders, a credit card number is sometimes known​ => subclasses​. A
person cannot be both driver and rider ​=> disjoint (and probably total)​. For rides a date
and time is known. Rides also track the ​specific (=> ride-specific => weak entity)​ driver
and the (possibly multiple) riders that participated and the ride price when known.

https://www.yworks.com/yed-live/

Solution:

Contact(​Identifier​, Name)
Driver(​Identifier→Contact​, LicencePl, CarModel)
Rider(​Identifier→Contact​, CreditCard)
Ride(​Identifier→Driver​, ​DateTime​, Price)
Rides(​(Identifier, DateTime)→Ride​, ​Identifier→Rider​)

Practicum Scenario 2
You are asked to develop a database for a tennis club "SLAMMERS". The membership list
contains basic information about members: member number (assigned by the club
administrator), first name, last name, possibly several telephone number(s) ​=> multi-valued
attribute​. Substantial fees are due every calendar year ​=> unclear whether installments
allowed or once per year​. For fee payments, the amount, the paying member ​=> weak​, the
membership year and the bank transfer date are tracked. For tennis matches played at the
club the database needs to record the ​players​ involved, the date and the result per
player/match combination​ ​=> match not weak on players because 1…*​. Matches are
always played in the context of some club tournament ​=> strong reason for weak
match depending on tournament​ and thus have a tournament name and round number.
Sometimes a location for matches is also known. ​=> Nullable statement

Solution:

Note: the text allows for the interpretation that yearly membership fees are paid at once for
that year. It could also, however, be argued that paying in installments is possible. In this
case, a payment_number attribute in combination with year as part of the key is a good
solution.

Member(​Number​, FirstName, LastName)
Phone(​Number→Member​, ​PhoneNr​)
Payment(​Number→Member​, ​payment_nr​, ​Year​, amount, DatePayment)
Match(​MatchID​, RoundNr, TournamentN, Date, Location) ​=>Location could be composite
Plays(​Number->Member​, ​MatchID→Match​, SetsWon)

Location is NULLABLE. It “is sometimes” known.

Alternative solution with tournament entity:

Note that one might also add a tournament date or date range. One could also add a
relationship between member and tournament if we want to explicitly store which members
will participate in a tournament beforehand.

Member(​Number​, FirstName, LastName)
Phone(​Number→Member​, ​PhoneNr​)
Payment(​Number→Member​, ​payment_nr​, ​Year​, amount, DatePayment)
Match(​TournamentName -> Tournament​, ​MatchID​, ​RoundNr​, DateTime, Location)
=>Location could still be composite
Plays(​Number->Member​, (​TournamentName, MatchID, RoundNr)→Match​, SetsWon)

Practicum Scenario 3
You are asked to develop a database for small company. The company wants to
have a database keeping track of their employees and contracts. Each employee
has a unique employee identification number, and we have to store the name and
date of birth. The company has different departments which are identified by their
name. Every employee works for at least one department, but due to restructuring
a department does not necessarily have any employees. If an employee works for

a department, he/she has one or more job titles (software engineer, manager, ac-
countant, cleaner, etc.)​ associated with this work (that is, the job titles can depend
on employee and department)​. This association should also carry the information
on the fte (that the employee works on a particular job title for a department). The
salary depends on the job title.

The company has contracts which have a unique contract number, and every con-
tract has a start date, an end date and the price that the customer pays on fulfilment
of the contract. We assign each customer a unique customer number, and store the
name and address. We also store what contract was ordered by what customer. For
the customers, we distinguish foreign customers and local customers. For the local
customers it is important to know whether the customer belongs to the public or
private sector since different taxation rates may apply. For foreign customers we
store information on the language of communication and currency in which pay-
ments are made.

For every contract, we create one or more working groups. Each working group
is assigned to precisely one contract. The working groups have a theme which
is unique among the working groups for a particular contract. Every working
group has precisely one leader assigned to it, and consists of one or more employ-
ees. Every employee can lead and can be part of an arbitrary number of working
groups. Each working group is assigned a bonus (percentage of the contract pay-
ment) which will be paid on fulfilment of the contract.

Solution:

- Every entity should have a key, every weak entity should have a discriminator.

- The working groups are created especially for a contract and have no key
themselves; hence they are a weak entity that with a identifying relationship to the
contract.

- An employee can belong to and/or lead multiple working groups. Every working
group has at least one leader. The easiest way to model this is two relationship sets
between working group and employee.

- The job titles are associated to a particular ‘works for‘ relationship between employee
and department. In particular, and employee can work for different departments on
different job titles. We of course want that there is a job title associated only if there
exists a ‘works for‘ relationship, therefore the best way to model this is aggregation;
see also the manages relationship on the slides.

- Note that when making design decisions:

- Aggregation alternative: Fte could have also been an attribute of the job, if
in_job (the relation) was a weak entity depending on the three entity sets
employee, department, and job_function. A weak entity set does not need to
depend on one entity set - multiple is possible. Aggregation practically lifts
works_for to become an abstract entity set in translation.

- Contract could have been weak - but it shouldn’t be - identified by the
customer IF the text didn’t clearly provide a unique key for contract. An entity
is weak only if it depends on another entity and itself does not have a key.

Translation to Relational Model for Scenario 3
Basic Translation

Here, we only eliminate tables of identifying relationships of weak entities.

employee (​employee_id​, name, date_of_birth)

department (​name​)

contract (​number​, start_date, end_date, price)

working_group (​number -> contract​, ​theme​, bonus)

customer (​number​, name, address)

foreign_customer (​number -> customer​, language, currency)

local_customer (​number -> customer​, ownership)

job_function (​title​, salary)

works_for (​employee_id -> employee​, ​name -> department​)

belong_to (​employee_id -> employee​, ​(number, theme) -> working_group​)

leads (​employee_id -> employee​, ​(number, theme) -> working_group​)

ordered_by (​contract_number -> contract​, ​customer_number -> customer​)

in_job (​(employee_id,name) -> works_for​, ​title -> job_function​, fte)

Nullable and uniqueness constraints:

- Basically all attributes are NOT NULLABLE.

- The following attributes must be declared unique:

- number of foreign_customer

- number of local_customer

since we do not want several foreign/local customers being the same

customer.

Moreover, we can model the cardinality constraints ‘at most one’ using the

following uniqueness constraints:

– contract_number of ordered_by

– (​number, theme​) of leads

Optimized translation

The optimised translation has two advantages:

1. we eliminate unnecessary tables

2. we can model ‘precisely 1’ constraints

We eliminate the following tables:

● leads​ by extending ​working_group​ with the key of ​employee
we use the constraint NOT NULLABLE to model that every working group has 1..1

leaders

● ordered_by​ by extending ​contract​ with the key of ​customer
we use the constraint NOT NULLABLE to model that every contract has 1..1

customers

employee (​employee_id​, name, date_of_birth)

department (​name​)

contract (​number​, start_date, end_date, price, ​ordered_by -> customer​)

working_group (​number -> contract​, theme, bonus, ​leader -> employee​)

customer (​number​, name, address)

foreign_customer (​number -> customer​, language, currency)

local_customer (​number -> customer​, ownership)

job_function (​title​, salary)

works_for (​employee_id -> employee​, ​name -> department​)

belong_to (​employee_id -> employee​, ​(number, theme) -> working_group​)

in_job (​(employee_id,name) -> works_for​, ​title -> job_function​, fte)

