
Databases

Jörg Endrullis

VU University Amsterdam

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Example Transaction

A withdrawal of 100 euro causes the ATM to perform a
transaction in the bank’s database.

ATM Transaction
balance← read_balance(account_no)
balance← balance − 100
write_balance(account_no, balance)

The account is properly updated to reflect the new balance.

Interrupted Transactions

Money Transfer from Checking to Saving
// Subtract money from source (checking) account
1. checking_balance← read_balance(checking_account_no)
2. checking_balance← checking_balance − 500
3. write_balance(checking_account_no, checking_balance)

// Add money to the target (saving) account
4. saving_balance← read_balance(saving_account_no)
5. saving_balance← saving_balance + 500
6. write_balance(saving_account_no, saving_balance)

Before the transaction gets to step 6, the system crashes.
(power outage, disk failure or software bug)

My money is lost!

Transactions should be atomic (executed fully or not at all).

Interrupted Transactions

Money Transfer from Checking to Saving
// Subtract money from source (checking) account
1. checking_balance← read_balance(checking_account_no)
2. checking_balance← checking_balance − 500
3. write_balance(checking_account_no, checking_balance)

// Add money to the target (saving) account
4. saving_balance← read_balance(saving_account_no)
5. saving_balance← saving_balance + 500
System crash!
6. write_balance(saving_account_no, saving_balance)

Before the transaction gets to step 6, the system crashes.
(power outage, disk failure or software bug)

My money is lost!

Transactions should be atomic (executed fully or not at all).

Concurrent Access: Lost Update

My wife and I have credit cards for the same account.
What if we use the cards at the same time (concurrently)?

Concurrent ATM Transaction
I withdraw 100 Euro, my wife 200 Euros.

me my wife DB state
bal← read(account) 1200

bal← read(account) 1200
bal← bal − 100 1200

bal← bal − 200 1200
write(account, bal) 1000

write(account, bal) 1100

The update of my wife was lost during this execution. Lucky me!

This is known as lost update anomaly.

Concurrent Access: Inconsistent Read

Reconsider the transfer from checking to saving account:

Transaction 1 Transaction 2
1. UPDATE Accounts
2. SET balance = balance-500
3. WHERE customer = 1904
4. AND account_type = ’Checking’

1. SELECT SUM(balance)
2. FROM Accounts
3. WHERE customer = 1904

5. UPDATE Accounts
6. SET balance = balance+500
7. WHERE customer = 1904
8. AND account_type = ’Saving’

Transaction 2 sees a temporary, inconsistent database state.

This is known as inconsistent read anomaly.

Concurrent Access: Dirty Read

Again, my wife and I are doing a transaction at the same time.
This time, my transaction gets cancelled!

Concurrent ATM Transaction
me my wife DB state
bal← read(account) 1200
bal← bal − 100 1200
write(account, bal) 1100

bal← read(account) 1100
bal← bal − 200 1100

abort 1200
write(account, bal) 900

My wife’s transaction has read the modified balance before my
transaction was rolled back (i.e., the effect are undone).

This is known as dirty read anomaly.

Concurrency Anomalies

Lost Update Anomaly
The effects of one transaction are lost due to an uncontrolled
overwrite performed by a second transaction.

Inconsistent Read
A transaction reads the partial result of another transaction.

Dirty Read
A transaction reads changes made by another transaction, but
the other transaction is aborted (rolled back) later.

Unrepeatable Read
A transaction reads a value which is afterwards changed by
another transaction (before the former transaction is finished).
So the first transaction operates on stale data.

ACID Properties

To prevent the mentioned problems. . .

Database management system ensures ACID properties

Atomicity:
transaction executes fully (commit) or not at all (abort)

Consistency:
transactions always leave the database in a consistent
state where all defined integrity constraints hold

Isolation:
multiple users can modify the database at the same time
but will not see each others partial actions

Durability:
once a transaction is committed successfully, the modified
data is persistent, regardless of disk crashes

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Transaction

Formally, transactions are defined as:

A transaction is a list of actions.

The actions are
reads (written R(O)) and
writes (written W(O))

of database objects O.

Transactions end with Commit or Abort.
These are sometimes omitted if not relevant.

Example Transaction

T1 : R(V),R(Y),W(V),W(C),Commit

Scheduler

The scheduler decides the execution order of concurrent
database access.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2

1

2
1

3
2

1

1
2
1
1

Schedules

A schedule is a list of actions from a set of transactions.

Intuitively, this is a plan on how to execute transactions.

The order in which 2 actions of a transaction T appear in a
schedule must be the same order as they appear in T .

T1 : R(V) W(V)
T2 : R(Y) W(Y)

Which of the following is a schedule of these transactions?

T1

T2

T1

T2

R(V)

R(Y) W(Y)

W(V)
S1 :

W(V)

R(Y) W(Y)

R(V)
S2 :

Serializable Schedules

A schedule is serial if the actions of the different transactions
are not interleaved; they are executed one after another.

T1

T2 R(Y) W(Y)

R(V) W(V)
S1 :

A schedule is serializable if its effect on the database is the
same as that of some serial schedule.

We assume that there are no effects other than the effects to the datbase, i.e.
no writing to the screen.

Quiz Serializable Schedules
We usually only want to allow serializable schedules. Why?

Conflicts

Two actions in a schedule conflict if they:
are from different transactions,
involve the same data item, and
one of the actions is a write.

T1

T2

R(Y) W(Y)

R(Y) W(Z)

W(X)

There are several types of conflicts:
write read (WR)
read write (RW)
write write (WW)

Such conflicts may cause a schedule to be not serializable.

WR Conflicts

There is a WR conflict between T1 and T2 if there is an item Y:
T1 writes Y and afterwards, T2 reads Y

If T1 has not committed this is a dirty read.

Find all WR conflicts in the following schedule

T1

T2

T3

R(V)

W(V)

W(Y)

R(Y) W(Z)

RW Conflicts

There is a RW conflict between T1 and T2 if there is an item Y:
T1 reads Y and afterwards, T2 writes Y

This read becomes unrepeatable.

Find all RW conflicts in the following schedule

T1

T2

T3

R(V)

W(V)

W(Y)

R(Y) W(Z) R(V)

WW Conflicts

There is a WW conflict between T1 and T2 if there is an item Y:
T1 writes Y and afterwards, T2 writes Y

This write becomes overwritten.

Find all WW conflicts in the following schedule

T1

T2

T3

W(Y)

W(V)

W(V)

R(Z) W(Y) W(Z)

Swapping Actions

We can swap actions (of different transactions) without
changing the outcome, if the actions are non-conflicting.

T1

T2

T1

T2

T1

T2

R(V)

R(Y)

R(Y) W(Y)

R(V) R(Y)

R(Y)

W(Y)

R(Y)

R(V) R(Y) W(Y)

Conflict Equivalent Schedules
Two schedules are conflict equivalent if they can be
transformed into each other by a sequence of swaps of
non-conflicting, adjacent actions.

Conflict Equivalent Schedules

Are any of the following schedules conflict equivalent?

T1

T2

T1

T2

T1

T2

W(V)

R(V)

R(V) W(V)
S1 :

W(V) R(V)

R(V)

W(V)
S2 :

R(V)

W(V) R(V) W(V)
S3 :

Schedules S1 and S2 are conflict equivalent (RR swap).

Conflict Serializable Schedules

A schedule is conflict-serializable if it is conflict equivalent to
some serial schedule.

Conflict-serializable schedules are serializable (but not
necessarily vice-versa).

Which of these schedules are conflict-serializable?

T1

T2

T1

T2

T1

T2

T3

W(V)

R(V)

W(V)
No

R(V)

R(V)

W(V)
Yes

R(V)

W(V)

W(Y)

R(Y) W(Z) Yes

Checking Conflict-Serializability

Given a schedule we can create a precedence graph:
The graph has a node for each transaction.
There is an edge from T1 to T2 if there is a conflicting
action between T1 and T2 in which T1 occurs first.

T1

T2

T1

T2

T1

T2

T3

W(V)

R(V)

W(V)
T1 T2

R(V)

R(V)

W(V)
T1 T2

R(V)

W(V)

W(Y)

R(Y) W(Z)
T1

T3

T2

Checking Conflict-Serializability

Checking Conflict-Serializability
A schedule is conflict-serializable if and only if there is
no cycle in the precedence graph!

T1

T2

T1

T2

T1

T2

T3

W(V)

R(V)

W(V)
T1 T2

R(V)

R(V)

W(V)
T1 T2

R(V)

W(V)

W(Y)

R(Y) W(Z)
T1

T3

T2

Schedules 2 and 3 have no cycles in their precedence graph.
They are conflict serializable!

Checking Conflict-Serializability

If the precedence graph has no cycles, then an equivalent
serial schedule is obtained by a topological sort of the
precedence graph.

T1

T2

T3

R(V)

W(V)

W(Y)

R(Y) W(Z)
T1

T3

T2

There is an edge from T1 to T2 thus T1 must be before T2.
There is an edge from T2 to T3 thus T2 must be before T3.

The sorting which fulfils these criteria is: T1,T2,T3.
This yields the equivalent serial schedule:

T1

T2

T3

W(Y)

R(V) R(Y) W(Z)

W(V)

Example

Is the following schedule conflict-serializable?

T1

T2

T3

R(V)

W(V)

W(V)

W(V)

The precedence graph is:

T1

T3

T2

There is a cycle, thus not conflict-serializable!

However, the schedule is serializable: T1,T2,T3!
The writes of T1 and T2 are blind writes.

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Is this following schedule conflict-serializable?

The precedence graph is:
T1

T3

T2

There is no cycle, thus the schedule is conflict-serializable!
T1

T2

T3

R(V) R(Z) R(Y)

W(V) W(Z)

R(Y) W(V)

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Ensuring Serializability

So far, we have seen a sufficient condition that allows us to
check whether a schedule is serializable.

We now consider ensuring serializability during runtime.

Challenge: the system does not know in advance which
transactions will run and which items they will access.

Different Strategies for Ensuring Serializability
1. Pessimistic

lock-based concurrency control (needs deadlock detection)
timestamp based concurrency control (not discussed here)

2. Optimistic
read-set/write-set tracking
validation before commit (transaction might abort)

3. Multi-version techniques
eliminate concurrency control overhead for read-only
queries

Pessimistic: Lock-based Concurrency Control

Lock-based concurrency control
Transactions must lock objects before using them.

Types of locks
Shared lock (S-lock) is acquired on Y before reading Y.

Many transactions can hold a shared lock on Y.

Exclusive lock (X-lock) is acquired on Y before writing Y.

A transaction can hold an exclusive lock on Y only if no
other transaction holds any lock on Y.

If a transaction has an X-lock on Y it can also read Y.

Pessimistic: Lock-based Concurrency Control

Schedule with explicit lock actions

T1

T2 S(A) R(A)

X(B) W(B)

U(A)

U(B)

X(B) W(B) U(B)

Here we use the following abbreviations:
S(. . .) = shared lock on . . .
X(. . .) = exclusive lock on . . .
U(. . .) = unlock . . .

2 Phase Locking Protocol

2 Phase Locking
Each transaction must get,

an S-lock on an object before reading it, and
an X-lock on an object before writing it.

A transaction cannot get new locks once it releases any lock.

time

#of locks held

lock
phase

release phase

Theorem
Any schedule that confirms to 2 PL is conflict-serializable.

2 PL is the concurrency control protocol used in DBMSs today.

2 Phase Locking Protocol: Examples

Which of the following conforms to the 2PL protocol?

T1

T2

T1

T2

T1

T2

T1

T2

S(A) R(A) U(A)

X(B) W(B) U(B)

X(B) W(B) U(B)
No

S(A) X(B) R(A)

X(B) W(B) U(B)

W(B) U(A) U(B)
No

S(A) R(A)

X(B) W(B)

U(A)

U(B)

X(B) W(B) U(B)
No

S(A) R(A)

X(B) W(B) U(B)

X(B) U(A) W(B) U(B)
Yes

Example: ATM Transaction

Concurrent ATM Transaction
Transaction 1 Transaction 2 DB state

slock(account) 1200
read(account)
unlock(account)

slock(account)
read(account)
unlock(account)

xlock(account)
write(account) 1100
unlock(account)

xlock(account)
write(account) 1000
unlock(account)

 Once a lock has been released, no new lock can be acquired.

Example: ATM Transaction

To comply with the 2PL, the ATM transaction must not acquire
new locks after a lock has been released.

A 2PL-compliant ATM withdrawal transaction
1. xlock(account)
2. bal← read_bal(account)
3. bal← bal − 100
4. write_bal(account, bal)
5. unlock(account)

Example: ATM Transaction

Concurrent ATM Transaction
Transaction 1 Transaction 2 DB state

xlock(account) 1200
read(account)

xlock(account)
write(account) Transaction

blocked
1100

unlock(account)
xlock(account)
read(account)
write(account) 900
unlock(account)

Transaction 2 blocked until transaction 1 releases the lock.

Note: now both transactions are correctly executed!

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Deadlocks

Like many lock-based protocols, 2PL has the risk of deadlocks.

A Deadlock Situation
Transaction 1 Transaction 2

xlock(A)
... xlock(B)

do something
...

... do something

lock(B)
...

(waiting for T2 to unlock B) lock(A)
(waiting for T1 to unlock A)

Both transactions would wait for each other indefinitely.
We need to detect deadlocks!

Deadlock Handling

Deadlock Detection via Wait-for-Graphs
The system maintains a waits-for-graph:

Nodes of the graph are transactions.
Edge T1 → T2 means T1 is blocked by a lock held by T2.
Hence T1 waits for T2 to release the lock.

The system checks periodically for cycles in the graph.

If a cycle is detected, then the deadlock is resolved by
aborting one or more transactions.

Selecting the victim is a challenge
Aborting young transactions might lead to starvation. The
same transaction may be cancelled again and again.
Aborting old transactions may cause a lot of computational
investment to be thrown away.

Deadlock Handling

Deadlock Detection via Timeout
Let transactions block on a lock request only for a limited time.

After timeout, assume a deadlock has occurred and abort T.

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Cascading Rollbacks

What is the problem here?

T1

T2

X(A) S(B)W(A)U(A)

S(A) R(A) X(A)W(A)U(A)

R(B) U(B)

Assume that:
T1 is aborted (due to a conflict with another transaction)
T2 tries to commit

What is the problem here?
T2 has read a value written by T1.
Thus if T1 is aborted, then T2 needs to be aborted too.
The commit will result in an abort.

Cascading Rollbacks

time

T1 abort
W(X)

T2
R(X)

T3
W(Y) R(X)

T4
R(Y)

What happens here?
Note: T2 and T3 cannot commit until the fate of T1 is known.
When T1 aborts:

T2 and T3 have already read data written by T1 (dirty read)
T2 and T3 need to be rolled back too (cascading roll back)

Since T3 is aborted, T4 needs to be aborted as well.

Cascades / Recoverable

Definition: Cascadeless Schedule
Delay reads: Only read values produced by already committed
transactions.

If T2 reads a value written by T1, then the read is delayed
until after the commit of T1.

No dirty reads, thus abort (rollback) does not cascade!

Definition: Recoverable Schedule
Delay commits:

If T2 reads a value written by T1, the commit of T2 must be
delayed until after the commit of T1.

Note that schedules should always be recoverable!

All cascadeless schedules are recoverable.

Cascades / Recoverable

T1

T2

X(A) S(B)W(A)U(A)

S(A) R(A) X(A)W(A)U(A)

R(B) U(B) Commit

Commit

Is this schedule cascadeless? No
If the commit of T1 fails, then T2 needs to be rolled back.

Is this schedule recoverable? No
The commit of T2 is not delayed until after commit of T1.

Not Cascadeless, But Recoverable

T1

T2

X(A) S(B)W(A)U(A)

S(A) R(A) X(A)W(A)U(A)

R(B) U(B) Commit

Commit

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Strict 2 Phase Locking Protocol

Strict 2 Phase Locking
Like in 2 PL, each transaction must get,

an S-lock on an object before reading it, and
an X-lock on an object before writing it.

But moreover:
A transaction releases all locks only when the transaction
is completed (i.e. when performing commit/rollback).

time

#of locks held

lock
phase

This protocol is cascadeless, avoids cascading aborts.

But there still are deadlocks!

Preclaiming 2 Phase Locking Protocol

Preclaiming 2 Phase Locking

time

#of locks held
release phase

All needed locks are declared at the beginning of the
transaction.

Advantage: No deadlocks!

Disadvantage

Not applicable in multi-query transactions.
(Queries might depend on the results of the previous queries)

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Can it be achieved using 2 PL?
Can it be achieved using Strict 2 PL?

Add the corresponding lock and unlock statements.

T1

T2

T3

S(V)R(V)

S(Y)R(Y)

X(V)W(V)

S(Z)R(Z)

X(V)W(V)

S(Y)R(Y)

X(Z)W(Z)

Impossible with Strict 2 PL: T1 must hold lock on V until commit.

This schedule is 2 PL !
Can it be achieved using Preclaiming 2 PL? No

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Can it be achieved using 2 PL?
Can it be achieved using Strict 2 PL?

Add the corresponding lock and unlock statements.

T1

T2

T3

S(VZY) R(V)U(V)

S(Y)R(Y)

X(V)W(V)

R(Z)

X(V)W(V)

R(Y)

X(Z)W(Z)

Impossible with Strict 2 PL: T1 must hold lock on V until commit.

This schedule is 2 PL !
Can it be achieved using Preclaiming 2 PL? No

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Can it be achieved using 2 PL?
Can it be achieved using Strict 2 PL?

Add the corresponding lock and unlock statements.

T1

T2

T3

S(VZY) R(V)U(V)

S(Y)R(Y)

X(V)W(V)

R(Z)

U(V)

X(V)W(V)

R(Y)

X(Z)W(Z)

Impossible with Strict 2 PL: T1 must hold lock on V until commit.

This schedule is 2 PL !
Can it be achieved using Preclaiming 2 PL? No

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Can it be achieved using 2 PL?
Can it be achieved using Strict 2 PL?

Add the corresponding lock and unlock statements.

T1

T2

T3

S(VZY) R(V)U(V)

S(Y)R(Y)

X(V)W(V)

R(Z)

X(Z)U(V)

X(V)W(V)

R(Y)

W(Z)

Impossible with Strict 2 PL: T1 must hold lock on V until commit.

This schedule is 2 PL !
Can it be achieved using Preclaiming 2 PL? No

Example

T1

T2

T3

R(V)

R(Y)

W(V)

R(Z)

W(V)

R(Y)

W(Z)

Can it be achieved using 2 PL?
Can it be achieved using Strict 2 PL?

Add the corresponding lock and unlock statements.

T1

T2

T3

S(VZY) R(V)U(V)

S(Y)R(Y)

X(V)W(V)

R(Z)U(Z)

X(Z)U(V)

X(V)W(V)

R(Y)

W(Z)

U(Y)

U(VY)

U(Z)

Impossible with Strict 2 PL: T1 must hold lock on V until commit.
This schedule is 2 PL !
Can it be achieved using Preclaiming 2 PL? No

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Granularity of Locking

The granularity of locking is a trade-off

database level

table level

row level

low concurrency low overhead

high concurrency high overhead

Idea: multi-granularity locking. . .

Multi-Granularity Locking

Decide the granularity of locks held for each transaction.
Depending on the characteristics of the transaction.

For example, acquire a row lock for:
Q1: row-selecting query (CUSTKEY is a key)
SELECT *
FROM CUSTOMERS
WHERE CUSTKEY = 42

For example, acquire a table lock for:
Q2: table scan query
SELECT *
FROM CUSTOMERS

How do such transactions know of each others locks?
Note that the locks are on different granularity levels!

Intention Locks

Databases use an additional type of locks: intention locks.
Lock mode intention share (IS)
Lock mode intention exclusive (IX)

A lock IS (or IX) on a coarser level of granularity means that
there is some S (or X) lock on a finer level of granularity.

Extended lock conflict matrix
S X IS IX

S x x
X x x x x
IS x
IX x x

Intention Locks

Multi-granularity Locking Protocol
Before a granule g can be locked in S (or X) mode,
the transaction has to obtain an IS (or IX) lock
on all coarser granularities that contain g.
After all intention locks are granted, the transaction can
lock g in the announced mode.

The query Q1 would for example:
obtain an IS lock on the database
obtain an IS lock on the table CUSTOMERS

Afterwards obtain an S lock on the row with CUSTKEY = 42.

The query Q2 would for example:
obtain an IS lock on the database

Afterwards obtain an S lock on the table CUSTOMERS.

Detecting Conflicts

Now suppose an updating query comes in:

Q3: update request
UPDATE CUSTOMERS
SET NAME = ’Pete’
WHERE CUSTKEY = 17

The query Q3 will try to:
obtain an IX lock on the database
obtain an IX lock on the table CUSTOMERS

Afterwards obtain an X lock on the row with CUSTKEY = 17.

compatible with Q1
(no conflict between IS of Q1 and IX lock of Q3 on table)
incompatible with Q2
(conflict between S lock of Q2 and IX lock of Q3 on table)

Optimising Performance

Suppose you have a typical log of queries for your database.

For each query in the log:
Analyse average time and variance for this type of query.

Long delays or frequent aborts may indicate contention.
Is it is a read-only or updating query?

Compute the read-sets and write-sets.
Will it require row or table locks? Shared or exclusive?

How do read- and write-sets of the different queries intersect?
What is the chance of conflicts? (delays/rollbacks)

Once you understand your query workload, you might improve
performance by:

Rewriting queries to have smaller read- and write-sets.
Change scheduling of queries to reduce contention.
E.g. rewrite applications to do large aggregation queries at night.

Use a different isolation level for the queries.

Isolation Levels

Some degree of inconsistency may be acceptable for specific
applications to gain increased concurrency & performance.

E.g. accept inconsistent read anomaly and be rewarded with
improved concurrency. Relaxed consistency guarantees can
lead to increased throughput!

SQL-92 Isolation Levels & Consistency Guarantees
isolation level dirty read non-repeat. read phantom rows

READ UNCOMMITTED possible possible possible

READ COMMITTED not possible possible possible

REPEATABLE READ not possible not possible possible

SERIALIZABLE not possible not possible not possible

Different DBMS support different levels of isolation.

Phantom Row Problem

Transaction 1 Transaction 2 Effect

scan relation R T1 locks all rows
insert new row into R T2 locks new row
commit T2’s lock released

scan relation R reads new row too!

Both transactions properly follow the 2 PL protocol!

Nevertheless, T1 observed an effect caused by T2.
Isolation violated!
Cause of the problem: T1 can only lock existing rows.

Solutions
1. multi-granularity locking (locking the table)
2. declarative locking: key-range or predicate locking

Isolation Levels via Locking

Basic idea: use variations of strict 2 PL.

SQL-92 Isolation Levels
READ UNCOMMITTED (also DIRTY READ or BROWSE)
Only write locks are acquired. Any row read may be
concurrently changed by other transactions.

READ COMMITTED (also CURSOR STABILITY)
Read locks are held for as long as the application cursor
sits on a particular, current row. Write locks as usual.
Rows may be changed between repeated reads.

REPEATABLE READ

Strict 2 PL locking. Nevertheless, a transaction may read
phantom rows if it executes an aggregation query twice.

SERIALIZABLE

Strict 2 PL + multi-granularity locking. No phantom rows.

SQL Transaction Control

SQL Transaction Control

SET AUTOCOMMIT ON/OFF

ON: each SQL query is one transaction

START TRANSACTION

COMMIT

ROLLBACK

SET TRANSACTION ISOLATION LEVEL ...

Many applications do not need full serializability
Selecting a weaker, yet acceptable isolation level is important
part of database tuning.

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Optimistic Concurrency Control

Up to now we have seen pessimistic concurrency control:
Assume that transaction will conflict.
Protect the database integrity by locks and lock protocols.

Optimistic concurrency control
Hope for the best.
Let transactions freely proceed with read/write operations.
Only at commit, check that no conflicts have happened.

Rationale:
Non-serializable conflicts are not that frequent.
Save the locking overhead.
Only invest effort if really required.

Optimistic Concurrency Control

Under optimistic concurrency control, transactions proceed
in three phases:

1. Read phase:
Execute transaction, but do not write data back to disk.
Collect updates in the transaction’s private workspace.

2. Validation phase:
When the transaction wants to commit, the DBMS test
whether its execution was correct (only acceptable conflicts
happened). If not, abort the transaction.

3. Write phase:
Transfer data from private workspace into database.

Note: phases 2 and 3 need to be performed in a non-
interruptible critical section (also called val-write phase).

Optimistic Concurrency Control: Validation

Validation is typically implemented by maintaining:
a read set RS(Tk) (attributes read by Tk), and
a write set WS(Tk) (attributes written by Tk)

for every transaction Tk .

Backward-oriented optimistic concurrency control (BOCC)
On commit, compare Tk against all committed transactions Ti .
Check succeeds if

Ti committed before Tk started or RS(Tk) ∩WS(Ti) = ∅

Forward-oriented optimistic concurrency control (FOCC)
On commit, compare Tk against all running transactions Ti .
Check succeeds if

WS(Tk) ∩ RS(Ti) = ∅

Overview

Overview

1. Concurrency Anomalies

2. Transactions, Schedules and Serializability

3. Two Phase Locking

Deadlock Handling

Cascading Rollbacks

Strict and Preclaiming 2 Phase Locking

Granularity of Locking

4. Optimistic Concurrency Control

5. Multiversion Concurrency Control

Multiversion Concurrency Control

Is this schedule serializable?

T1

T2

R(X) W(X)

R(X) W(Y)

R(Y) W(Z)

No

But what if we had a copy of the old values available?

Then we could do:

Multi-version

T1

T2

R(X) W(X)

R(X) W(Y)

R(Y-old) W(Z)

This is can be serialised to:
T1

T2

R(X) W(X) R(Y) W(Z)

R(X) W(Y)

Multiversion Concurrency Control

With old object versions still around, read-only transactions
never need to be blocked!

Might see outdated, but consistent version of the data.
As if everything in the query happened at the moment it
started.

Problems:
Versioning requires space and management overhead.
Update transactions still need concurrency control!

Multiversion Concurrency Control: Snapshot Isolation

Snapshot Isolation
Each transaction sees a consistent snapshot of the database
that corresponds to the state at the moment it started.

With snapshot isolation:

Read-only transactions do not have to lock anything!

Transactions conflict if they write the same object:
Pessimistic concurrency control: only writes are locked
Optimistic concurrency control: only write-sets interesting

Snapshot isolation does not guarantee serializability! But
The anomalies dirty read, unrepeatable read, phantom
rows do not occur. However, write skew occurs.

Used in Oracle SQL Server (Oracle has no real serializability).

Multiversion Concurrency Control: Snapshot Isolation

Write Skew Anomaly
Constraint: X + Y < 2
Initially: X = 0 and Y = 0
T1 : X = X + 1; it sees X = 1 and Y = 0 and commits
T2 : Y = Y + 1; it sees X = 0 and Y = 1 and commits
T1 and T2 have an empty write intersection (no conflict).
End result: X = 1 and Y = 1 X + Y ≥ 2

This problem does not occur if this is a CHECK constraint
comparing values of the same row. The finest locking
granularity are rows.

Therefore write skew anomalies occur with complex assertions
that involve multiple tuples.

Often not a problem since most databases do not support
complex constraints anyway.

Transactions: Objectives

After completing this chapter, you should understand:
ACID properties, transactions
anomalies (lost update, dirty read, unrepeatable read,
phantoms)
transaction schedules, serializability, conflicts (rw, wr, ww)
conflict equivalent, conflict serializability
lock base concurrency control: 2 PL (Strict/ Preclaiming)
cascading rollbacks, deadlocks, deadlock detection
cascadeless, recoverable
granularity of locking, intention locks
SQL isolation levels: READ UNCOMMITTED, READ COMMITTED,
READ STABILITY, SERIALIZABLE
optimistic concurrency approach
multiversion concurrency control, snapshot isolation

