
Databases

Jörg Endrullis

VU University Amsterdam

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

Basic SQL Query Syntax

Basic SQL query (extensions follow)

SELECT A1, . . . ,An
FROM R1, . . . ,Rm
WHERE C

The FROM clause declares which table(s) are accessed.

The WHERE clause specifies a condition for rows in these
tables that are considered in this query.
The absence of C is equivalent to TRUE.

The SELECT clause specifies the attributes of the result.
Here * means output all attributes occurring in R1, . . . ,Rm.

Example Database

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Tuple Variables

The FROM clause can be understood as declaring variables
that range over tuples of a relation.

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

SELECT E.ENO, E.TOPIC
FROM EXERCISES E
WHERE E.CAT = 'H'

1 Rel.Alg.
2 SQL

The query may be thought of as

for all E ∈ EXERCISES do
if E.CAT = 'H' then

print E.ENO, E.TOPIC
end if

end for

Tuple variable E represents a single row of EXERCISES.
The loop assigns each row in succession.

Tuple Variables

EXERCISES(CAT,ENO,TOPIC,MAXPT)

For each table in the FROM clause there is a tuple variable.

If the the name of the tuple variable is not given explicitly,
the variable will have the name of the relation:

SELECT EXERCISES.ENO, EXERCISES.TOPIC
FROM EXERCISES
WHERE EXERCISES.CAT = 'H'

In other words, FROM EXERCISES is understood as:

FROM EXERCISES EXERCISES

If a tuple variable is explicitly declared, e.g.:

FROM EXERCISES E

then the implicit tuple variable EXERCISES is not declared
and EXERCISES.ENO will yield an error.

Attribute References

STUDENTS(SID,FIRST,LAST,EMAIL) RESULTS(SID,CAT,ENO,POINTS)

Attributes are referenced in the form
R.A

A reference to attribute A of variable R may be written as
A

if R is the only tuple variable with an attribute named A.

For example,

SELECT CAT, ENO, POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID

AND FIRST = 'Ann' AND LAST = 'Smith'

FIRST, LAST can only refer to S

CAT, ENO, POINTS can only refer to R

SID on its own is ambiguous (may refer to S or R)

Attribute References

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Consider this query:

SELECT ENO, SID, POINTS, MAXPT
FROM RESULTS R, EXERCISES E
WHERE R.ENO = E.ENO

AND R.CAT = 'H' AND E.CAT = 'H'

Here ENO in the SELECT clause is ambiguous.

Although forced to be equal by the join condition, SQL requires
the user to specify unambiguously which of the ENO attributes
(bound to R or E) is meant.

The unambiguity rule thus is purely syntactic and does not
depend on the query semantics.

Joins

STUDENTS(SID,FIRST,LAST,EMAIL) RESULTS(SID,CAT,ENO,POINTS)

Consider a query with two tuple variables:

SELECT A1, . . . ,An
FROM STUDENTS S, RESULTS R
WHERE C

S ranges over 4 tuples in STUDENTS

R ranges over 8 tuples in RESULTS

In principle, all 4× 8 = 32 combinations will be considered:

for all S ∈ STUDENTS do
for all R ∈ RESULTS do

if C then
print A1, . . . ,An

end if
end for

end for

Joins

A good DBMS will use a better evaluation algorithm
(depending on the condition C).

This is the task of the query optimiser.
For understanding the semantics of a query, the simple nested
foreach algorithm suffices:

The query optimizer may use any algorithm that produces
the exact same output (except possibly the tuple order).

For example, if C contains the join condition
S.SID = R.SID

then the DBMS might execute the query efficiently by:
looping over the tuples in RESULTS,
finding the matching STUDENTS tuple via an index on
STUDENT.SID

DBMS typically create an index over the key attributes.

Joins

A join needs to be explicitly specified in the WHERE clause:

SELECT R.CAT, R.ENO, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID -- Join Condition

AND S.FIRST = 'Ann' AND S.LAST = 'Smith'

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Output of this query?
SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE R.CAT = 'H' AND R.ENO = 1

Joins

Guideline: it is almost always an error if there are two tuples
variables which are not linked (directly or indirectly) via join
conditions.

In this query, all three tuple variables are connected:

SELECT E.CAT, E.ENO, R.POINTS, E.MAXPT
FROM STUDENTS S, RESULTS R, EXERCISES E
WHERE S.SID = R.SID

AND R.CAT = E.CAT AND R.ENO = E.ENO
AND S.FIRST = 'Ann' AND S.LAST = 'Smith'

The tuple variable connection works as follows:

S
S.SID = R.SID

R
R.CAT = E.CAT

AND R.ENO = E.ENO

E

Often (like in this example), the conditions correspond to
the foreign key relationships between the tables.

Query Formulation

Formulate the following query in SQL
Which are the topics of all exercises solved by Ann Smith?

To formulate this query:

consider that Ann Smith is a student, we need
tuple variable S over STUDENTS
identifying condition in the WHERE clause
S.FIRST = 'Ann' AND S.LAST = 'Smith'

exercise topics are of interest, so we need
tuple variable E over EXERCISES

Thus we start from:
SELECT DISTINCT E.TOPIC
FROM STUDENTS S, EXERCISES E
WHERE S.FIRST = 'Ann' AND S.LAST = 'Smith'

(DISTINCT since several exercises may have the same topic.)

Query Formulation

SELECT DISTINCT E.TOPIC
FROM STUDENTS S, EXERCISES E
WHERE S.FIRST = 'Ann' AND S.LAST = 'Smith'

Note: S and E are still unconnected:

The connection graph of the tables in a database schema
(connections are foreign key relations) helps in
understanding the connection requirements:

STUDENTS RESULTS EXERCISES

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

We see that the S–E connection is indirect and needs to
be established via a tuple variable R over RESULTS:

S.SID = R.SID AND R.CAT = E.CAT AND R.ENO = E.ENO

Query Formulation

It is not always that trivial. . .

The connection graph may contain cycles, which makes the
selection of the “right path” more difficult (and error-prone).

Consider a course registration database that also contains
teaching assistants assignments:

TEACHING ASSISTANTS

STUDENTS COURSES

ENROLLMENTS

Unnecessary Joins

Do not join more tables than needed.
Query will run slowly if the optimizer overlooks the redundancy.

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Results for homework 1
SELECT R.SID, R.POINTS
FROM RESULTS R, EXERCISES E
WHERE R.CAT = E.CAT AND R.ENO = E.ENO

AND E.CAT = 'H' AND E.ENO = 1

Will the following query produce the same results?
SELECT SID, POINTS
FROM RESULTS R
WHERE R.CAT = 'H' AND R.ENO = 1

Unnecessary Joins

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

What will be the result of this query?
SELECT R.SID, R.POINTS
FROM RESULTS R, EXERCISES E
WHERE R.CAT = 'H' AND R.ENO = 1

Unnecessary Joins

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Is there any difference between these two queries?
SELECT S.FIRST, S.LAST
FROM STUDENTS S

SELECT DISTINCT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID

Self Joins

In some query scenarios, we might have to consider more than
one tuple of the same relation to generate a result tuple.

Is there a student with 9 points for both, homework 1 & 2?
SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS H1, RESULTS H2
WHERE S.SID = H1.SID AND S.SID = H2.SID

AND H1.CAT = 'H' AND H1.ENO = 1
AND H2.CAT = 'H' AND H2.ENO = 2
AND H1.POINTS = 9 AND H2.POINTS = 9

Self Joins

Find students who solved at least two exercises.

(This may also be solved using aggregations.)

SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS E1, RESULTS E2
WHERE S.SID = E1.SID AND S.SID = E2.SID

“Unexpected” result
What is going wrong here?

We need to ensure that E1 and E2 refer to distinct exercises:
...
AND (E1.CAT <> E2.CAT OR E1.ENO <> E2.ENO)

Duplicate Elimination

A core difference between SQL and relational algebra is that
duplicates have to explicitly eliminated in SQL.

Which exercises have been solved by at least one student?

SELECT CAT, ENO
FROM RESULTS

CAT ENO
H 1
H 2
M 1
H 1
...

...

The DISTINCT modifier may be applied to the SELECT clause to
request explicit duplicate row elimination

SELECT DISTINCT CAT, ENO
FROM RESULTS

CAT ENO
H 1
H 2
M 1

Duplicate Elimination

Intuition behind the algorithm: think of K as the set of attributes
that are uniquely determined by the result.

Sufficient condition for superfluous DISTINCT

Assumption: WHERE clause is a conjunction (AND).

1. Let K be the set of attributes in the SELECT clause.

2. Add to K attributes A such that
A = c for a constant c is in the WHERE clause, or
A = B for B ∈ K is in the WHERE clause, or
if K contains a key of a tuple variable,
add all attributes of that variable.

Repeat 2 until K is stable.

If K contains a key of every tuple variable listed under FROM,
then DISTINCT is superfluous.

Duplicate Elimination

SELECT DISTINCT S.FIRST, S.LAST, R.ENO, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE R.CAT = 'H' AND R.SID = S.SID

Let us assume that (FIRST, LAST) is a key for STUDENTS.

1. Initialize K = {S.FIRST, S.LAST, R.ENO, R.POINTS}.
2. K + {R.CAT} because of R.CAT = 'H'

2. K + {S.SID, S.EMAIL} as K contains a key of STUDENTS
2. K + {R.SID} because of the conjunct S.SID = R.SID

K contains a key of
STUDENTS S (S.FIRST, S.LAST) and
RESULTS R (R.SID, R.CAT, R.ENO)

Thus DISTINCT is superfluous.

If FIRST, LAST were no key of STUDENTS, this test would not
succeed (and rightly so).

Query Formulation Traps

Typical mistakes

Missing join conditions (very common).

Unnecessary joins (may slow query down significantly).

Self joins: incorrect treatment of multiple tuple variables
which range over the same relation (missing (in)equality
conditions).

Unexpected duplicates, often an indicator for faulty
queries (adding DISTINCT is no cure here).

Unnecessary DISTINCT.
Although today’s query optimizer are probably more “clever” than the
average SQL user in proving the absence of duplicates.

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

Non-Monotonic Behaviour

SQL queries using only the constructs introduced so far
compute monotonic functions on the database state:

if further rows gets inserted,
these queries yield a superset of rows.

However, not all queries behave monotonically in this way.

Example of a non-monotonic query

Query: find students who have not submitted any homework.
In the current DB state, Maria Brown would be a correct
answer.
INSERT INTO RESULTS VALUES (104, 'H', 1, 8) would
invalidate this answer.

Such queries cannot be formulated with the SQL constructs
introduced so far.

Non-Monotonic Behaviour

In natural language, queries that contain formulations like
“there is no”,
“does not exists”,
. . .

indicate non-monotonic behaviour.
=⇒ negated existential quantification

Furthermore,
“for all”,
“the minimum/maximum”

also indicate non-monotonic behaviour.
=⇒ universally quantification

In an equivalent SQL formulation of such queries, this boils
down to a test whether a query yields a (non-)empty result.

NOT IN

With
IN

NOT IN

it is possible to check whether an attribute value appears in a
set of values computed by another SQL subquery.

Students without any homework result
SELECT FIRST, LAST
FROM STUDENTS
WHERE SID NOT IN (SELECT SID

FROM RESULTS
WHERE CAT = 'H')

FIRST LAST
Maria Brown

NOT IN

SELECT FIRST, LAST
FROM STUDENTS
WHERE SID NOT IN (SELECT SID

FROM RESULTS
WHERE CAT = 'H')

At least conceptually, the subquery is evaluated before the
evaluation of the main query starts:

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

Subquery result
SID

101
101
102
102
103

Then, for every STUDENTS tuple, a matching SID is searched in
the subquery result. If there is none, the tuple is output.

NOT IN

EXERCISES(CAT,ENO,TOPIC,MAXPT) RESULTS(SID,CAT,ENO,POINTS)

Topics of homeworks solved by at least one student.
SELECT TOPIC
FROM EXERCISES
WHERE CAT = 'H' AND ENO IN (SELECT ENO

FROM RESULTS
WHERE CAT = 'H')

Is there a difference to this query?
(with or without DISTINCT)
SELECT DISTINCT TOPIC
FROM EXERCISES E, RESULTS R
WHERE E.CAT = 'H'

AND E.ENO = R.ENO
AND R.CAT = 'H'

NOT IN

In SQL-86,
subquery is required to deliver a single output column

In SQL-92,
comparisons where extended to the tuple level.

It is thus valid to write, e.g.:

...
WHERE (A,B) NOT IN (SELECT C,D FROM . . .)

NOT EXISTS

The construct NOT EXISTS enables the main (or outer) query to
check whether the subquery result is empty.

Students that have not submitted any homework
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID)

In the subquery, tuple variables declared in the FROM clause
of the outer query may be referenced.
You may also do so for IN subqueries.

In this case, the outer query and subquery are correlated.
The subquery is “parameterized”.

NOT EXISTS

Students that have not submitted any homework
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID)

Tuple variable S loops over the four rows in STUDENTS.

Conceptually, the subquery is evaluated four times (with S.SID
bound to the current SID value).

The DBMS is free to choose a more efficient equivalent evaluation strategy
(cf. query unnesting).

NOT EXISTS

Students that have not submitted any homework
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID)

“First,” S is bound to the STUDENTS tuple
SID FIRST LAST EMAIL
101 Ann Smith ...

In the subquery, S.SID is “replaced by” 101:
SELECT *
FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = 101

SID CAT ENO POINTS
101 H 1 10
101 H 2 8

Since the result is non-empty, the NOT EXISTS in the outer
query is not satisfied for this S.

NOT EXISTS

Students that have not submitted any homework
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID)

“Finally,” S is bound to the STUDENTS tuple
SID FIRST LAST EMAIL
104 Maria Brown ...

In the subquery, S.SID is “replaced by” 104:
SELECT *
FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = 104

SID CAT ENO POINTS
(no rows selected)

Since the result is empty, the NOT EXISTS in the outer query
is satisfied and Maria Brown is output.

NOT EXISTS

While in the subquery tuple variables from outer query may be
referenced, the converse is illegal!

Wrong!

SELECT FIRST, LAST, R.ENO
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID)

Compare this to variable scoping (global/local variables)
in block-structured programming languages (Java, C).
Subquery tuple variables declarations are “local.”

NOT EXISTS

Non-correlated subqueries with NOT EXISTS are almost
always an indication of an error!

Wrong!
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS (SELECT *

FROM RESULTS R
WHERE CAT = 'H')

If there is at least one tuple in RESULTS,
the overall result will be empty.

Non-correlated subqueries evaluate to a set/relation constant
and may make perfect sense (e.g., when used with (NOT) IN).

NOT EXISTS

It is legal SQL syntax to use EXISTS without negation:

Who has submitted at least one homework?
SELECT SID, FIRST, LAST
FROM STUDENTS S
WHERE EXISTS (SELECT *

FROM RESULTS R
WHERE R.SID = S.SID
AND R.CAT = 'H')

Can we reformulate the above without using EXISTS?

“For all”

EXERCISES(CAT,ENO,TOPIC,MAXPT) RESULTS(SID,CAT,ENO,POINTS)

Who got the best result for homework 1?
SELECT FIRST, LAST, POINTS
FROM STUDENTS S, RESULTS X
WHERE S.SID = X.SID

AND X.CAT = 'H' AND X.ENO = 1
AND NOT EXISTS

(SELECT *
FROM RESULTS Y
WHERE Y.CAT = 'H' AND Y.ENO = 1
AND Y.POINTS > X.POINTS)

In natural language:
A result X for homework 1 is selected if there is no
result Y for this exercise with more points than X.

“For all”

In mathematical logic there are quantifiers:
∃X (ϕ) existential quantifier

Meaning: There is an X that satisfies formula ϕ.

∀X (ϕ) universal quantifier
Meaning: For all X , formula ϕ is satisfied (true).

In tuple relational calculus (TRC) the maximum number of
points for homework 1 reads:

{ X.POINTS | X ∈ RESULTS

∧ X.CAT = 'H'

∧ X.ENO = 1

∧ ∀ Y
(
(Y ∈ RESULTS∧ Y.CAT = 'H'∧ Y.ENO = 1)⇒ Y.POINTS 6 X.POINTS

)
}

“For all”

SQL does not offer a universal quantifier (∀, “for all”).

SQL offers only the existential quantifier EXISTS.
However, see >= ALL below.

This is no problem because

∀X (ϕ) ⇐⇒ ¬∃X (¬ϕ)

The following two statements are equivalent:
All cars are red.
There exists no car that is not red.

“For all”

SQL does not have ⇒. Thus commonly used pattern
∀X (ϕ1 ⇒ ϕ2)

becomes
¬∃X (ϕ1 ∧ ¬ϕ2)

The following example:

{ X.POINTS | X ∈ RESULTS ∧ X.CAT = 'H' ∧ X.ENO = 1

∧ ∀ Y
(
(Y ∈ RESULTS∧ Y.CAT = 'H'∧ Y.ENO = 1)⇒ Y.POINTS 6 X.POINTS

)
}

is thus logically equivalent to:

{ X.POINTS | X ∈ RESULTS ∧ X.CAT = 'H' ∧ X.ENO = 1

∧ ¬∃ Y
(
(Y ∈ RESULTS∧ Y.CAT = 'H'∧ Y.ENO = 1)

∧ Y.POINTS > X.POINTS
)
}

“For all”

{ X.POINTS | X ∈ RESULTS ∧ X.CAT = 'H' ∧ X.ENO = 1

∧ ¬∃ Y
(
(Y ∈ RESULTS∧ Y.CAT = 'H'∧ Y.ENO = 1)

∧ Y.POINTS > X.POINTS
)
}

Can be written in SQL as follows:

SELECT X.POINTS
FROM RESULTS X
WHERE X.CAT = 'H' AND X.ENO = 1
AND NOT EXISTS

(SELECT *
FROM RESULTS Y
WHERE Y.CAT = 'H' AND Y.ENO = 1
AND Y.POINTS > X.POINTS)

Nested Subqueries

Subqueries may be nested!

List the students who solved all homeworks
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS

(SELECT *
FROM EXERCISES E
WHERE CAT = 'H'
AND NOT EXISTS

(SELECT *
FROM RESULTS R
WHERE R.SID = S.SID
AND R.ENO = E.ENO
AND R.CAT = 'H'))

Inner query: all results for a given student and homework
Middle query: homeworks of the student without results
Outer query: students that have no homework without results

Common Errors

Does this query compute the student with the best result
for homework 1?
SELECT DISTINCT S.FIRST, S.LAST, X.POINTS
FROM STUDENTS S, RESULTS X, RESULTS Y
WHERE S.SID = X.SID
AND X.CAT = 'H' AND X.ENO = 1
AND Y.CAT = 'H' AND Y.ENO = 1
AND X.POINTS > Y.POINTS

If not, what does the query compute?

Common Errors

STUDENTS(SID,FIRST,LAST,EMAIL) RESULTS(SID,CAT,ENO,POINTS)

Return those students which did not solve homework 1
SELECT FIRST, LAST
FROM STUDENTS S
WHERE NOT EXISTS

(SELECT *
FROM RESULTS R, STUDENTS S
WHERE R.SID = S.SID
AND R.CAT = 'H' AND R.ENO = 1)

Quiz
What goes wrong here?

Subqueries bring up the concept of variable scoping (just like
in programming languages) and related pitfalls.

Common Errors

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

What is the error in this query?
“Find those students who have neither submitted a home-
work nor participated in any exam.”

SELECT FIRST, LAST
FROM STUDENTS
WHERE SID NOT IN (SELECT SID

FROM EXERCISES)

1. Is this syntactically correct SQL?
2. What is the output of this query?
3. If the query is faulty, correct it.

ALL, ANY, SOME

SQL allows to compare a single value with all values in a set
(computed by a subquery). Such comparisons may be

universally (ALL), or
existentially (ANY)

quantified.

Who got the best result for homework 1?
SELECT S.FIRST, S.LAST, X.POINTS
FROM STUDENTS S, RESULTS X
WHERE S.SID = X.SID AND X.CAT = 'H' AND X.ENO = 1
AND X.POINTS >= ALL (SELECT Y.POINTS

FROM RESULTS Y
WHERE Y.CAT = 'H'
AND Y.ENO = 1)

Note: usage of >= is important here.

ALL, ANY, SOME

This query is equivalent to the previous query:
Using ANY.
SELECT S.FIRST, S.LAST, X.POINTS
FROM STUDENTS S, RESULTS X
WHERE S.SID = X.SID AND X.CAT = 'H' AND X.ENO = 1
AND NOT X.POINTS < ANY (SELECT Y.POINTS

FROM RESULTS Y
WHERE Y.CAT = 'H'
AND Y.ENO = 1)

Note that ANY and ALL do not extend SQL’s expressiveness.

The ANY statement

A < ANY (SELECT B FROM · · · WHERE · · ·)

is equivalent to the EXISTS statement

EXISTS (SELECT * FROM · · · WHERE · · · AND A < B)

ALL, ANY, SOME

Syntactical remarks on comparisons with subquery results:

1. ANY and SOME are synonyms.

2. x IN S is equivalent to x = ANY S.

3. The subquery must yield a single result column.

If none of the keywords ALL, ANY, SOME are present, i.e.

. . . WHERE x = (SELECT A FROM . . .) ,

the subquery must yield a single column and at most one row.

Ensures that the comparison is between atomic values.

An empty subquery result is equivalent to NULL.

Single Value Subqueries

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Who got full points for homework 1?
SELECT S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT= 'H' AND R.ENO = 1
AND R.POINTS = (SELECT MAXPT

FROM EXERCISES
WHERE CAT = 'H' AND ENO = 1)

Comparisons with subquery results (note: no ANY, ALL) are
possible if the subquery returns at most one row:

Why is this guaranteed here?

Use constraints to ensure this condition.
The DBMS will yield a runtime error if the subquery returns
two or more rows.

Single Value Subqueries

If the subquery has an empty result, the null value is returned.

Bad style!
SELECT FIRST, LAST
FROM STUDENTS S
WHERE (SELECT 1

FROM RESULTS R
WHERE R.SID = S.SID
AND R.CAT = 'H' AND R.ENO = 1) IS NULL

Subqueries under FROM

Since the result of an SQL query is a table, it seems natural to
use a subquery result wherever a table might be specified, i.e.,
in the FROM clause.

In the following example, the join of RESULTS and EXERCISES is
computed in a subquery.

Points (in %) achieved in homework exercise 1.
SELECT X.SID, (X.POINTS * 100 / X.MAXPT) AS PCT
FROM (SELECT E.CAT, E.ENO, R.SID, R.POINTS, E.MAXPT

FROM EXERCISES E, RESULTS R
WHERE E.CAT = R.CAT AND E.ENO = R.ENO) X

WHERE X.CAT = 'H' AND X.ENO = 1

One use of subqueries under FROM are nested aggregations.

Subqueries under FROM

Inside the subquery, tuple variables introduced in the same
FROM clause may not be referenced.

�

Not allowed in SQL!
SELECT S.FIRST, S.LAST, X.ENO, X.POINTS
FROM STUDENTS S, (SELECT R.ENO, R.POINTS

FROM RESULTS R
WHERE R.CAT = 'H'
AND R.SID = S.SID) X

Subqueries under FROM

A view declaration registers a query (not a query result)
under a given identifier in the database.

View: homework points
CREATE VIEW HW_POINTS AS
SELECT S.FIRST, S.LAST, R.ENO, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H'

In queries, views may be used like stored tables:
SELECT ENO, POINTS
FROM HW_POINTS
WHERE FIRST = 'Michael' AND LAST = 'Jones'

Views may be thought of as subquery macros

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

Aggregations

Aggregation functions are functions from a set or multiset to
a single value, e.g.,

min {42,57,5,13,27} = 5

Aggregation functions are also known as
group functions, or
column functions

Take as input the values of an entire column.

Typical use: statistics, data analysis, report generation.

Aggregations

SQL-92 defines the five main aggregation functions
COUNT, SUM, AVG, MAX, MIN

How many students in the current database state?

SELECT COUNT(*)
FROM STUDENTS

COUNT(*)
4

Some DBMS define further aggregation functions:
CORRELATION, STDDEV, VARIANCE, . . .

Some aggregation functions are sensitive to duplicates:
SUM, COUNT, AVG ,

some are insensitive:
MIN, MAX

SQL allows to explicitly request to ignore duplicates, e.g.:
· · · COUNT(DISTINCT A) · · ·

Simple Aggregations

Simple aggregations feed the value set of an entire column
into an aggregation function.
Below, we will discuss partitioning (or grouping) of columns.

How many students in the current database state?

SELECT COUNT(*)
FROM STUDENTS

COUNT(*)
4

Best and average result for homework 1?
SELECT MAX(POINTS), AVG(POINTS)
FROM RESULTS
WHERE CAT = 'H' AND ENO = 1

MAX(POINTS) AVG(POINTS)
10 8

Simple Aggregations

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

How many students have submitted a homework?
SELECT COUNT(DISTINCT SID)
FROM RESULTS
WHERE CAT = 'H'

COUNT(DISTINCT SID)
3

What is the total number of points student 101 got for her
homeworks?

SELECT SUM(POINTS) AS "Total Points"
FROM RESULTS
WHERE SID = 101 AND CAT = 'H'

Total Points
18

Simple Aggregations

What average percentage of the maximum points did the
students reach for homework 1?
SELECT AVG(R.POINTS / E.MAXPT) * 100
FROM RESULTS R, EXERCISES E
WHERE R.CAT = 'H' AND E.CAT = 'H'
AND R.ENO = 1 AND E.ENO = 1

Homework points for student 101 plus 3 bonus points.
SELECT SUM(POINTS) + 3 AS "Total Homework Points"
FROM RESULTS
WHERE SID = 101 AND CAT = 'H'

Restrictions

Aggregations may not be nested (makes no sense).

Aggregations may not be used in the WHERE clause:

Wrong!
· · · WHERE SUM(A) > 100 · · ·

If an aggregation function is used and no GROUP BY is used,
no attributes may appear in the SELECT clause.

Wrong!
SELECT CAT, ENO, AVG(POINTS)
FROM RESULTS

Null Values and Aggregations

Usually, null values are ignored (filtered out) before the
aggregation operator is applied.

Exception:
COUNT(*) counts null values
COUNT(*) counts rows, not attribute values

If the input set is empty, aggregation functions yield NULL.
Exception: COUNT returns 0.

This seems counter-intuitive, at least for SUM
(where users might expect 0 in this case)

However, allows to detect the difference between:
all column values NULL, or
values that sum up to 0.

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

GROUP BY

GROUP BY partitions the tuples of a table into disjoint groups.
Aggregation functions applied for each group separately.

Average points for each homework
SELECT ENO, AVG(POINTS)
FROM RESULTS
WHERE CAT = 'H'
GROUP BY ENO

ENO AVG(POINTS)
1 8
2 8.5

All tuples agreeing in their ENO values (i.e., belonging to the same
homework) form a group for aggregation.

GROUP BY

The GROUP BY partitions the incoming tuples into groups:
based on value equality for the GROUP BY attributes

(after evaluation of the FROM and WHERE clauses)

SELECT ENO, AVG(POINTS)
FROM RESULTS
WHERE CAT = 'H'
GROUP BY ENO

ENO-based groups formed by above example query:
SID CAT ENO POINTS
101 H 1 10
102 H 1 9
103 H 1 5

101 H 2 8
101 H 2 9

Aggregation is subsequently done for every group (yielding as
many rows as groups).

GROUP BY

The GROUP BY construction can never produce empty groups.
COUNT(*) will never result in 0

Since the GROUP BY attributes have a unique value for every
group, these attributes may be used in the SELECT clause.

A reference to any other attribute is illegal.

Wrong!
SELECT E.ENO, E.TOPIC, AVG(R.POINTS)
FROM EXERCISES E, RESULTS R
WHERE E.CAT = 'H'

AND R.CAT = 'H'
AND E.ENO = R.ENO

GROUP BY E.ENO

Wrong! Although E.ENO functionally determines E.TOPIC
which thus is unique (for every group).

GROUP BY

Grouping by E.ENO and E.TOPIC yields the desired result:

SELECT E.ENO, E.TOPIC, AVG(R.POINTS)
FROM EXERCISES E, RESULTS R
WHERE E.CAT = 'H'

AND R.CAT = 'H'
AND E.ENO = R.ENO

GROUP BY E.ENO, E.TOPIC

E.ENO E.TOPIC AVG(POINTS)
1 Rel.Alg. 8
2 SQL 8.5

Now the DBMS has a syntactic clue that E.TOPIC is unique.

GROUP BY

Is there any semantical difference between these queries?
1. SELECT TOPIC, AVG(POINTS / MAXPT)

FROM EXERCISES E, RESULTS R
WHERE E.CAT='H' AND R.CAT='H' AND E.ENO=R.ENO
GROUP BY TOPIC

2. SELECT TOPIC, AVG(POINTS / MAXPT)
FROM EXERCISES E, RESULTS R
WHERE E.CAT='H' AND R.CAT='H' AND E.ENO=R.ENO
GROUP BY TOPIC, E.ENO

GROUP BY

The sequence of the GROUP BY attributes is not important.

Duplicates should be eliminated with DISTINCT, although
such elimination can also be realised via GROUP BY:

Grouping without aggregation: DISTINCT.
SELECT CAT, ENO
FROM RESULTS
GROUP BY CAT, ENO

This is an abuse of GROUP BY and should be avoided.

HAVING

Aggregations may not be used in the WHERE clause.

With GROUP BY, however, it may make sense to filter out entire
groups based on some aggregated group property.

This is possible with SQL’s HAVING clause.
The condition in the HAVING clause may (only) involve
aggregation functions.

For example, only groups of size greater than n tuples.
SELECT ... -- output columns
FROM ... -- what tuples
WHERE ... -- filter tuples
GROUP BY ... -- group tuples
HAVING COUNT(*) > n -- filter groups

HAVING

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Which students got at least 18 homework points?
SELECT FIRST, LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H'
GROUP BY S.SID, FIRST, LAST
HAVING SUM(POINTS) >= 18

FIRST LAST
Ann Smith

Michael Jones

The WHERE clause refers to single tuples, the HAVING condition
applies to entire groups (in this case: all tuples containing the
homework results of a student).

WHERE vs. HAVING

HAVING should not contain direct attribute references, only
aggregation functions.

This is wrong
SELECT FIRST, LAST
FROM STUDENTS S, RESULTS R
GROUP BY S.SID, R.SID, FIRST, LAST
HAVING S.SID = R.SID AND SUM(POINTS) >= 18

This is correct
SELECT FIRST, LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID
GROUP BY S.SID, FIRST, LAST
HAVING SUM(POINTS) >= 18

Aggregation Subqueries

Who has the best result for homework 1?
SELECT S.FIRST, S.LAST, R.POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H' AND R.ENO = 1
AND R.POINTS = (SELECT MAX(POINTS)

FROM RESULTS
WHERE CAT = 'H' AND ENO = 1)

The aggregate in the subquery is guaranteed to yield
exactly one row as required.

Remember: earlier we solved this using ANY/ALL.

Aggregation Subqueries

Aggregation subqueries may be used in the SELECT clause:
This sometimes can be used to replace GROUP BY.

The homework points of the individual students.
SELECT FIRST, LAST, (SELECT SUM(POINTS)

FROM RESULTS R
WHERE R.SID = S.SID
AND R.CAT = 'H')

FROM STUDENTS S

Nested Aggregations

Nested aggregations require a subquery in the FROM clause.

What is the average number of homework points
(excluding those students who did not submit anything)?

SELECT AVG(X.HW_POINTS)
FROM (SELECT SID, SUM(POINTS) AS HW_POINTS

FROM RESULTS
WHERE CAT = 'H'
GROUP BY SID) X

X

SID HW_POINTS
101 18
102 18
103 5

AVG(X.HW_POINTS)
13.67

Maximizing Aggregations

Who has the best overall homework result?
(maximum sum of homework points)
SELECT FIRST, LAST, SUM(POINTS) AS TOTAL
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H'
GROUP BY S.SID, FIRST, LAST
HAVING SUM(POINTS)

>= ALL (SELECT SUM (POINTS)
FROM RESULTS
WHERE CAT = 'H'
GROUP BY SID)

Alternatively, we could use a view to solve this problem
(next slide).

Maximizing Aggregations

View: total number of homework points for each student.
CREATE VIEW HW_TOTALS AS
SELECT SID, SUM(POINTS) AS TOTAL
FROM RESULTS
WHERE CAT = 'H'
GROUP BY SID

Alternative formulation of query on previous slide.
SELECT S.FIRST, S.LAST, H.TOTAL
FROM STUDENTS S, HW_TOTALS H
WHERE S.SID = H.SID
AND H.TOTAL = (SELECT MAX(TOTAL)

FROM HW_TOTALS)

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

UNION

UNION allows to combine the results of two queries.

UNION is needed since there is no other method to construct
one result column that draws from different tables/columns.

This is necsessary, for example, if specialisations of a
concept (“subclasses”) are stored in separate tables.

For instance, if we have tables

GRADUATE_COURSES and
UNDERGRADUATE_COURSES

both of which are specialisations of the concept COURSE.

UNION is also commonly used for case analysis (cf., the
if . . . then . . . cascades in programming languages).

UNION

Assign student grades based on homework 1.
SELECT S.SID, S.FIRST, S.LAST, 'A' AS GRADE
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H' AND R.ENO=1
AND R.POINTS >= 9

UNION ALL

SELECT S.SID, S.FIRST, S.LAST, 'B' AS GRADE
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H' AND R.ENO=1
AND R.POINTS >= 7 AND R.POINTS < 9

UNION ALL

...

UNION

The UNION operand subqueries must return tables with the
same number of columns and compatible data types.

Columns correspondence is by column position (1st, 2nd,. . .).
Column names need not be identical.

SQL distinguishes between
UNION: with duplicate elimination, and
UNION ALL: concatenation (duplicates retained).

Other SQL-92 set operations:
EXCEPT (−)
INTERSECT (∩)

These do not add to the expressivity of SQL.

How?

Conditional Expressions

UNION is the portable way to conduct a case analysis.

Sometimes a conditional expression suffices & more efficient.

Conditional expression syntax varies between DBMSs.
Oracle uses DECODE(· · ·), for example.

Here, we will use the SQL-92 syntax.

Full exercise category name for the results of Ann Smith.
SELECT CASE WHEN CAT = 'H' THEN 'Homework'

WHEN CAT = 'M' THEN 'Midterm Exam'
WHEN CAT = 'F' THEN 'Final Exam'
ELSE 'Unknown Category' END,

ENO, POINTS
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID
AND S.FIRST = 'Ann' AND S.LAST = 'Smith'

Conditional Expressions

A typical application is to replace a null value by a value Y :

· · · CASE WHEN X IS NOT NULL THEN X ELSE Y END · · ·

In SQL-92, this may be abbreviated to
· · · COALESCE (X, Y)· · ·

List the e-mail addresses of all students
SELECT FIRST, LAST, COALESCE (EMAIL, '(none)')
FROM STUDENTS

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

Sorting Output

If query output is to be read by humans, enforcing a certain
tuple order helps in interpreting the result.

ORDER BY allows to specify a list of sorting criteria.

Without such an ordering, the order is unpredictable:
Depends on the internal algorithms of the query optimiser.
Order may change even query to query.

An ORDER BY clause may specify multiple attribute names.
The second attribute is used for tuple ordering if they agree
on the first attribute, and so on (lexicographic ordering).
Sort in ascending order (default): ASC,
Sort in descending order: DESC.

Sorting Output

Homework results sorted by exercise (best result first).
In case of a tie, sort alphabetically by student name.

SELECT R.ENO, R.POINTS, S.FIRST, S.LAST
FROM STUDENTS S, RESULTS R
WHERE S.SID = R.SID AND R.CAT = 'H'
ORDER BY R.ENO, R.POINTS DESC, S.LAST, S.FIRST

First, compare R.ENO.
If the first criterion leads to a tie, compare POINTS DESC.
If we still have a tie, compare S.LAST.
If we still have a tie, compare S.FIRST.

ENO POINTS FIRST LAST
1 10 Ann Smith
1 9 Michael Jones
1 5 Richard Turner
2 9 Michael Jones
2 8 Ann Smith

Sorting Output

In some application scenarios it is necessary to add columns
to a table to obtain suitable sorting criteria.

If the students names were stored in the form 'Ann␣Smith',
sorting by last name is more or less impossible. Having
separate columns for first and last name is better.

Null values are all listed first or all listed last in the sorted
sequence (depending on the database).

Since the effect of ORDER BY is purely “cosmetic”, ORDER BY
may not be applied to a subquery.

SQL Overview

Overview

1. SELECT-FROM-WHERE Blocks, Tuple Variables

2. Subqueries, Non-Monotonic Constructs

3. Aggregations I: Aggregation Functions

4. Aggregations II: GROUP BY, HAVING

5. UNION, Conditional Expressions

6. ORDER BY

7. SQL-92 Joins, Outer Join

Example Database

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Joins

Up to version SQL-86, there were no explicit joins in queries.
Instead, Cartesian products of relations (FROM) are
specified and then filtered via WHERE.

Natural join of RESULTS and EXERCISES

SELECT R.CAT AS CAT, R.ENO AS ENO,
SID, POINTS, TOPIC, MAXPT

FROM RESULTS R, EXERCISES E
WHERE R.CAT = E.CAT AND R.ENO = E.ENO

Joins

Since SQL-92 there are explicit join operations.

“Natural join” in SQL-92
SELECT SID, ENO, (POINTS / MAXPT) * 100
FROM RESULTS NATURAL JOIN EXERCISES
WHERE CAT = 'H'

The keywords NATURAL JOIN lead the DBMS to automatically
add the join predicate to the query:

RESULTS.CAT = EXERCISES.CAT
AND RESULTS.ENO = EXERCISES.ENO

In a natural join, the join predicate arises implicitly by
comparing all columns with the same name in both tables.

Inner and Outer Joins

SQL-92 supports the following join types ([..] is optional):
[INNER] JOIN: Usual join.
LEFT [OUTER] JOIN: Preserves rows of left table.
RIGHT [OUTER] JOIN: Preserves rows of right table.
FULL [OUTER] JOIN: Preserves rows of both tables.
CROSS JOIN: Cartesian product (all combinations).

A join (1) eliminates tuples without partner.
A B
a1 b1
a2 b2

1

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

The left outer join preserves all tuples in its left argument:
A B
a1 b1
a2 b2

|1

B C
b2 c2
b3 c3

=

A B C
a1 b1 (null)
a2 b2 c2

Inner and Outer Joins

The right outer join preserves all tuples in its right argument:
A B
a1 b1
a2 b2

1|

B C
b2 c2
b3 c3

=

A B C
a2 b2 c2

(null) b3 c3

The full outer join preserves all tuples in both arguments:

A B
a1 b1
a2 b2

|1|

B C
b2 c2
b3 c3

=

A B C
a1 b1 (null)
a2 b2 c2

(null) b3 c3

The cross join is the Cartesian product:

A B
a1 b1
a2 b2

×
B C
b2 c2
b3 c3

=

A B B C
a1 b1 b2 c2
a1 b1 b3 c3
a2 b2 b2 c2
a2 b2 b3 c3

Inner and Outer Joins

The join predicate may be specified as follows:

NATURAL prepended to join operator name.

Yields comparison of columns with the same name.

USING (A1, . . . ,An) appended to join operator name.

The Ai must be columns appearing in both tables. The join
predicate then is R.A1=S.A1 AND . . . AND R.An=S.An.

ON 〈Condition〉 appended to join operator name.

CROSS JOIN has no join predicate.

Inner and Outer Joins

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Number of submission per homework (0 if no submission)
SELECT E.ENO, COUNT(SID)
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = R.CAT AND E.ENO = R.ENO
WHERE E.CAT = 'H'
GROUP BY E.ENO

All exercises are present in the result of the left outer join.
In exercises without solutions,
columns SID and POINTS will contain NULL.

COUNT(SID) ignores rows where SID IS NULL.

Inner and Outer Joins

Equivalent query without OUTER JOIN (12 vs. 5 lines).
SELECT E.ENO, COUNT(*)
FROM EXERCISES E, RESULTS R
WHERE E.CAT = 'H' AND R.CAT = 'H'
AND E.ENO = R.ENO
GROUP BY E.ENO

UNION ALL

SELECT E.ENO, 0
FROM EXERCISES E
WHERE E.CAT = 'H'
AND E.ENO NOT IN (SELECT R.ENO

FROM RESULTS R
WHERE R.CAT = 'H')

Inner and Outer Joins

STUDENTS(SID, FIRST, LAST, EMAIL)
EXERCISES(CAT, ENO, TOPIC, MAXPT)
RESULTS(SID→STUDENTS, (CAT,ENO)→EXERCISES, POINTS)

Exercises with corresponding submissions in different ways. . .
Join with ON
SELECT *
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = R.CAT AND E.ENO = R.ENO

Join with USING
SELECT *
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

USING (CAT, ENO)

Join with NATURAL
SELECT *
FROM EXERCISES E NATURAL LEFT OUTER JOIN RESULTS R

Inner and Outer Joins
Is there a problem with the following query?
“Number of homeworks solved per student (including 0).”

SELECT FIRST, LAST, COUNT(ENO)
FROM STUDENTS S LEFT OUTER JOIN RESULTS R

ON S.SID = R.SID
WHERE R.CAT = 'H'
GROUP BY S.SID, FIRST, LAST

It is generally wise to restrict the outer join inputs before the
outer join is performed (or move restrictions into the ON clause).
Corrected version of last query.
SELECT FIRST, LAST, COUNT(ENO)
FROM STUDENTS S LEFT OUTER JOIN

(SELECT SID, ENO
FROM RESULTS
WHERE CAT = 'H') R

ON S.SID = R.SID
GROUP BY S.SID, FIRST, LAST

Inner and Outer Joins

Will tuples with CAT = 'M' appear in the output?
SELECT E.CAT, E.ENO, R.SID, R.POINTS
FROM EXERCISES E LEFT OUTER JOIN RESULTS R

ON E.CAT = 'H'
AND R.CAT = 'H'
AND E.ENO = R.ENO

Conditions filtering the left table make little sense in a left
outer join predicate.

The left outer join will make the “filtered” tuples appear anyway
(as join partners for unmatched RESULTS tuples).

SQL: Objectives

After completing this chapter, you should be able to:

write advanced SQL queries
with multiple tuple variables over different/the same relation
with nested queries
. . .

use aggregation, grouping, union

be comfortable with the various join variants

evaluate the correctness and equivalence of SQL queries
this includes sometimes tricky issues of deciding the
presence of duplicate result tuples

