
Databases

Jörg Endrullis

VU University Amsterdam



The Relational Model

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Constraints: General Remarks

4. Key Constraints

5. Foreign Key Constraints



Example Database (Students)

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones null
103 Richard Turner ...
104 Maria Brown ...

Columns in table STUDENTS:
SID: “student ID” (unique number)
FIRST, LAST: first and last name
EMAIL: email address (may be null)



Example Database (Exercises)

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

Columns in table EXERCISES:

CAT: category
H: Homework
M: midterm exam
F: final exam

ENO: exercise number within category
TOPIC: topic of exercise
MAXPT: maximum number of points



Example Database

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones null
103 Richard Turner ...
104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS
101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Columns in table RESULTS:

SID: student who did the exercise (references STUDENTS)
CAT, ENO: identification of exercise (references EXERCISE)
POINTS: graded points



Data Values, Types and Domains

All table entries are data values which conform to some given
selection of data types.

Examples of data types
strings, e.g.

VARCHAR(n) - strings of up to n characters
TEXT - variable length storage of strings up to 2GB

numbers (of different lengths and precision), e.g.
INT - an integer
NUMERIC(n) - decimal number with n digits

date and time
binary data, e.g.

BLOB - large binary object

Available data types depend on the database management
system, and the supported version of the SQL standard.



Data Values, Types and Domains

The domain val(D) of a type D is the set of possible values.

val(INT) = {-2147483648, . . . , 2147483647}

val(NUMERIC(2)) = {-99, . . . , 99}

SQL allows to define application-specific domains as names
for (subsets of) standard data types:
CREATE DOMAIN EXNUM AS NUMERIC(2)

We may even add constraints:
CREATE DOMAIN EXNUM AS NUMERIC(2) CHECK(VALUE > 0)

Domains are useful to document that two columns represent
the same kind of real-world object (such that, for example,
comparisons between values in the columns are meaningful).



Relation Schema

Relation schema
A relation schema s (schema of a single relation) defines

A (finite) sequence A1, . . . ,An of distinct attribute names.

For each attribute Ai a data type (or domain) Di .

A relation schema can be written as s = (A1 : D1, . . . ,An : Dn).

Let dom(Ai) = val(Di) be the set of possible values for Ai .

Creating a relation schema in SQL

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

Relation schema in SQL
CREATE TABLE EXERCISES
(CAT CHAR(1),
ENO NUMERIC(2),
TOPIC VARCHAR(40),
MAXPT NUMERIC(2))



Relation Schema: Notation

SQL CREATE TABLE statements represent a rather poor way to
communicate schemas (from human to human):

Relation schema in SQL
CREATE TABLE EXERCISES
(CAT CHAR(1),
ENO NUMERIC(2),
TOPIC VARCHAR(40),
MAXPT NUMERIC(2))

Often it is useful to talk about abstractions of the schema:
If the column data types are not important, we can write

EXERCISES (CAT, ENO, TOPIC, MAXPT)

Also widely in use: sketch of the table header
EXERCISES

CAT ENO TOPIC MAXPT



Relational Database Schemas

Relational database schema
A relational database schmema S defines

A finite set of relation names {R1, . . . ,Rm}.
For every relation Ri , a relation schema schema(Ri).
A set C of integrity constraints (defined below).

In summary, S = ({R1, . . . ,Rm}, schema, C).

Example: relational database schema
relation names

{ STUDENTS, EXERCISES, RESULTS }

relation schema for every relation name
STUDENTS (SID, FIRST, LAST, EMAIL)

EXERCISES (CAT, ENO, TOPIC, MAXPT)

RESULTS (SID, CAT, ENO, POINTS)



Tuples

Tuples are used to formalize table rows.

A tuple t with respect to the relation schema

s = (A1 : D1, . . . ,An : Dn)

is a sequence (d1, . . . ,dn) of n values such that di ∈ val(Di).

In other words: t ∈ val(D1)× · · · × val(Dn).

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

(’H’, 1, ’Rel.Alg.’, 10) is a tuple in the table EXERCISES.

Given a tuple, we write t .Ai (or t [Ai ]) for the value in column Ai .

For instance, (’H’, 1, ’Rel.Alg.’, 10).MAXPT = 10.



Database States

Let a database schema ({R1, . . . ,Rm}, schema, C) be given.

A database state I for this database schema defines for every
relation name Ri to a finite set of tuples I(Ri) with respect to
the relation schema schema(Ri).

So, if schema(Ri) = (A1 : D1, . . . ,An : Dn), then

I(Ri) ⊆ val(D1)× · · · × val(Dn)

Thus I(Ri) is a relation in the mathematical sense.

You can think of the state as tables conforming to the schema
STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones null
103 Richard Turner ...
104 Maria Brown ...

EXERCISES

CAT ENO TOPIC MAXPT
H 1 Rel.Alg. 10
H 2 SQL 10
M 1 SQL 14

Except: there is no order on the tuples (rows), and tables
contain no duplicate tuples.



Summary Relational Database Schemas

Database (Schema)

Relation Relation

Tuple Tuple

Attribute
Value

Attribute
Value

Attribute
Value Data

Tuple ≈ Objects

Relation ≈ Classes



The Relational Model

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Constraints: General Remarks

4. Key Constraints

5. Foreign Key Constraints



Null Values

The relational model allows missing attribute values (table
entries may be empty).

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones null
103 Richard Turner ...
104 Maria Brown ...

Formally, the set of possible values (the domain) for an attribute
is extended by a new special value “null”.

“Null” is not the number 0 or the empty string.
A null value is different from all values of any data type.

�



Null Values

Null values are used to model a variety of scenarios:

No value exists.
A student might not have an e-mail address.

The attribute is not applicable for this tuple.
Some exercises are for training only: no points will be given.

A value exists (in the real world), but is not known.
In table STUDENTS, EMAIL might be missing for a student.

Any value will do.



Null Values: Advantages

Without null values, it would be necessary to split a relation
into many, more specific relations (“subclasses”).

Example
STUDENT_WITH_EMAIL, STUDENT_WITHOUT_EMAIL

Alternatively: introduce an additional relation with schema

STUD_EMAIL (SID, EMAIL)

But this complicates queries: join operations are needed (upcoming).

If null values are not allowed
users might invent fake values to fill the missing columns

Fake values
Why are fake values a bad idea in database design?



Null Values: Problems

Since the same null value is used for quite different purposes,
there can be no clear semantics.

SQL uses a three-valued logic (true, false, unknown) for the
evaluation of comparisons that involve null values.
For users accustomed to two-valued logic, the outcome is often surprising.

Which of these queries return rows with NULL in column A?
1. SELECT * FROM R WHERE A = 42

2. SELECT * FROM R WHERE NOT (A = 42)

3. SELECT * FROM R WHERE A = NULL

None of these queries does! Use ... WHERE A IS NULL.

Some programming languages do not know about null values.
Explicit null value check and treatment required when reading attribute values
into program variables. This complicates application programs.



Excluding Null Values

Since null values may lead to complications, SQL allows to
control whether an attribute value may be null or not.

By default, null values are allowed.

Students may not have an e-mail address
CREATE TABLE STUDENTS (

SID NUMERIC(3) NOT NULL,
FIRST VARCHAR(20) NOT NULL,
LAST VARCHAR(20) NOT NULL,
EMAIL VARCHAR(80) )

Declaring many attributes as NOT NULL

leads to simpler application programs
fewer surprises during query evaluation



The Relational Model

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Constraints: General Remarks

4. Key Constraints

5. Foreign Key Constraints



Valid Database States

Primary goal of DB design
The database should be an image of the relevant subset of
the real world.

The plain definition of tables often allows too many
(meaningless, illegal) database states.

A valid database state?
CUSTOMER

CUST_NO NAME BIRTH_YEAR CITY . . .
1 Smith 1936 Pittsburgh . . .
2 Jones 1965 Philadelphia . . .
3 Brown 64 New York . . .
3 Ford 2015 Washington . . .

Customer numbers must be unique.
The year of birth must be greater than 1870.
Customers must be at least 18 years old.



Constraints

Integrity constraints (IC) are conditions which every database
state has to satisfy.

This restricts the set of possible database states.
Ideally only admits images of possible real world scenarios.

Integrity constraints are specified in the database schema.

The database management system will refuse any update
leading to a database state that violates any of the constraints.



Constraints in SQL

In the SQL CREATE TABLE statement, the following types of
constraints may be specified:

NOT NULL:
No value in this column can be the null value.

Keys:
Each key value can appear once only.

Foreign keys:
Values in a column must also appear as key values in another table.

CHECK:
Column values must satisfy a given predicate.
SQL allows for inter-column CHECK constraints.



Constraints Quiz

Which of the following are constraints?

1. It is possible that a student gets 0 points for a solution.

2. A student can get at most 3 points more than the maximum
number of points stored in EXERCISES (extra credit).

3. The attribute CAT in can only have the values H, M, F.

4. The CAT means: H for homework, M for mid-term exam, . . . .

5. Student IDs should be unique.



Summary: Constraints

Why specify constraints?

(Some) protection against data input errors.

Constraints document knowledge about DB states.

Enforcement of law / company standards.

Protection against inconsistency if data is stored
redundantly.

Queries/application programs become simpler if the
programmer may assume that the data fulfils certain
properties.



The Relational Model

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Constraints: General Remarks

4. Key Constraints

5. Foreign Key Constraints



Keys

A key of a relation R is an attribute A that uniquely identifies
the tuples in R.

The key constraint is satisfied in the DB state I if and only if,
for all tuples t ,u ∈ I(R) the following holds:

t .A = u.A =⇒ t = u

In other words: different tuples have different values for A.

Example
If attribute SID has been declared as key for STUDENTS, this
database state is illegal:

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
101 Michael Jones (null)
103 Michael Turner ...



Keys

Once SID has been declared as a key of STUDENTS, the DBMS
will refuse any insertion of tuples with duplicate key values.

Keys are constraints: they refer to all possible DB states, not
only the current one.

STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Michael Turner ...

Even though the above DB state would allow the attribute LAST
to serve as a key for STUDENTS, this would be too restrictive.

The future insertion of "John Smith" would be impossible.



Composite Keys

In general, a key can consist of several attributes. Such keys
are also called composite keys.

If columns A,B together form a composite key, it is forbidden
that there are two tuples t 6= u which agree in both attributes.

t .A = u.A ∧ t .B = u.B =⇒ t = u

Columns may in agree A or B, though, e.g.:

This relation satisfies the composite key FIRST, LAST:
STUDENTS

SID FIRST LAST EMAIL
101 Ann Smith ...
102 John Smith ...
103 John Miller ...



Composite Keys

Implication between key constraints
A key constraint becomes weaker (i.e., less restrictive, more
DB states are valid) if attributes are added to the key.

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith ...
102 John Smith ...
103 John Miller ...

This relation
violates the key constraint FIRST,
violates the key constraint LAST,
but satisfies the key constraint FIRST,LAST.

Weak keys
Do all relations have a key (what is the weakest possible key)?



Minimality of Keys

STUDENTS
SID FIRST LAST
101 Ann Smith
102 John Smith
103 John Miller

What keys satisfy the key constraints?
{SID} minimal
{FIRST, LAST} minimal
{SID, FIRST}
{SID, LAST}
{SID, FIRST, LAST}

If a set of attributes A satisfies the key constraint, then any
superset K that includes A will automatically also have the
unique identification property.

A key with attribute set {A1, . . . ,Ak } is minimal if no Ai can be
removed from the set without destroying the unique
identification property.

The usual definition of keys requires that the set of key
attributes {A1, . . . ,Ak } is minimal.



Multiple Keys

A relation may have more than one (minimal) key (last slide).

In the relational model, one key is designated as primary key.
A primary key cannot be null.

All other keys are called alternate or secondary keys.

The primary key attributes are often marked by underlining:

R(A1 : D1, . . . ,Ak : Dk ,Ak+1 : Dk+1, . . . ,An : Dn)

It is good design practice to define a primary key that
consists of a single (simple) attribute only,
is never updated.

This is good for
consistency (applications might store the key), and
indexing and retrieving items.



Key Quiz

Keys for an appointment calendar
APPOINTMENTS

DATE START END ROOM EVENT
Jan. 19 10:00 11:00 IS 726 Seminar
Jan. 19 14:00 16:00 IS 726 Lecture
May 24 14:00 18:00 Amsterdam Meeting

What would be correct (minimal) keys?
What would be an example for a superkey?
Are additional constraints useful to exclude database
states that a key would still permit?



The Relational Model

Overview

1. Relational Model Concepts: Schema, State

2. Null Values

3. Constraints: General Remarks

4. Key Constraints

5. Foreign Key Constraints



Foreign Keys

The relational model does not provide explicit relationships,
links, or pointers.

Idea: use the key attributes to reference a tuple.

The values for the key attributes uniquely identify a tuple.
The key attributes values may serve as logical tuple addresses.

Foreign keys
To refer from a relation R to tuples of S

add the primary key attributes of S to the attributes of R

Such a reference is only “stable” if the (logical) address of a
tuple does not change (if the key attributes are not updated).



Foreign Keys

A foreign key implements a one-to-many relationship.

SID in RESULTS is a foreign key referencing STUDENTS

STUDENTS
SID FIRST LAST EMAIL
101 Ann Smith ...
102 Michael Jones (null)
103 Richard Turner ...
104 Maria Brown ...

RESULTS
SID CAT ENO POINTS
101 H 1 10
101 H 2 8
102 H 1 9
102 H 2 9
103 H 1 5
105 M 1 7

?

We need an existence guarantee for key values in STUDENTS.

The set of SID values appearing in STUDENTS should be a kind of
dynamic domain for the attribute REULTS.SID.



Foreign Key Constraints

Foreign Key Constraints
CREATE TABLE RESULTS (
...
FOREIGN KEY (SID) REFERENCES STUDENTS(SID)

)

The foreign key constraint ensures that
for every tuple in t in RESULTS,
there exist a tuple u in STUDENTS
such that t .SID = u.SID

Enforcing foreign key constraints ensures the referential
integrity of the database.



Foreign Key Constraints

Once a foreign key is declared, the the following update
update operations violate the foreign key constraint:

Insertion into table RESULTS
without matching tuple in STUDENTS

DBMS rejects the update

Deletion from table STUDENTS
if the deleted tuple is referenced in RESULTS

DBMS rejects the update, or

deletion cascades, that is, tuples in RESULTS referencing
the deleted tuple will also be deleted, or

the foreign key is set to null in RESULTS.



Foreign Keys and Notation

Only keys may be referenced (primary or secondary).
References to non-key attributes are not permitted.

A table with a composite key must be referenced with a
composite foreign key that has the same number of
attributes and domains.
It is not required that the corresponding attributes have identical names.

Foreign keys are denoted with arrows (→) in the relation
schema, composite keys appear in parentheses:

RESULTS (SID → STUDENTS,
(CAT, ENO) → EXERCISES,
POINTS)

STUDENTS (SID,FIRST,LAST,EMAIL)
EXERCISES (CAT,ENO,TOPIC,MAXPT)

Typically the primary key is referenced, so it suffices to list the target relation.



Foreign Keys are not Keys

Foreign keys may be null, unless with NOT NULL constraint.
This corresponds to a “null” pointer in programming languages.

� Foreign keys are not themselves keys.



The Relational Model: Objectives

After completing this chapter, you should be able to

explain the concepts of the Relational Model,
Schemas, state, domains
read various notations for relational schema

explain applications and problems of null values,

explain integrity constraints and their importance,

explain the meaning of keys and foreign keys,

develop simple relational schemas.


