
Databases

Jörg Endrullis

VU University Amsterdam



Databases

A database (DB) is a collection of data with
a certain logical structure
a specific semantics
a specific group of users

A database management system (DBMS) allows to
create, modify and manipulate a database
query (retrieve) the data using a query language
support persistent storage of large amounts of data
enable durability and recovery from failure
control access to the data by many users in parallel

without unexpected interactions among users (isolation)
actions on the data should never be partial (atomicity)



Why not just store data in files?

Why not just store data in files?
no query language
weak logical structure (limited to directories)
no efficient access

searching through a large file can take hours

no or limited protection from data loss
no access control for parallel manipulation of data

So we need database management systems. . .



Motivation for Database Management Systems

Motivation for database management systems

data independence
logical view on the data independent of physical storage
user interacts with a simple view on the data
behind the scenes (invisible for the user) are complex
storage structures that allow rapid access and manipulation

avoidance of duplication
different views on the same database

for different users or different applications
hiding parts of the data for privacy or security

This is achieved by the ANSI SPARC Architecture . . .



View of Data

ANSI SPARC Architecture: 3 levels

physical level

logical level

view 2view 1 . . . view n

Internal

Conceptual

External

Different applications might use different views
Data is stored only once at the physical level

good for consistency



View of Data

ANSI SPARC Architecture: 3 levels

View level:
application programs hide details of data types
hide information (e.g. exam grade) for privacy or security

Logical level: also called ‘conceptual schema’
describes data stored in the database, and
relations among the data

Physical level:
how the data is stored
disk pages, index structures, byte layout, record order

This ensures logical and physical data independence. . .



Data Independence

Logical data independence
Logical data independence is the ability to modify the logical
schema without breaking existing applications

applications access the views, not the logical database

Physical data independence
Physical data independence is the ability to modify the
physical schema without changing the logical schema

e.g. a change in workload might cause the need for
different indexing structures
different database engine
distributing the database on multiple machines
. . .



Relational Model

In this course, we work with relational databases. Their view
and logical level represented data as relations/tables.

Example relational database instance
customer

id name street city
1928374 Johnson 12 Alma Palo Alto
3211231 Jones 34 Main Harisson
0192837 Smith 7 South Rye

account
depositor accountnr
1928374 101343
3211231 217343
0192837 201762

row = tuple record: (3211231, Jones, 34 Main, Harisson)

In the pure relational model, a table is a set of tuples:
has no duplicate tuples (rows)
no order on the tuples



Motivation for Database Management Systems

Motivation for database management systems

high-level declarative query languages
query tells what you want, independent of storage structure
efficient data access (automatic query optimisation)

Declarative Query Languages
Queries should:

describe what information is sought
not prescribe how to retrieve the desired information

Relational databases usually use SQL as query language . . .



Imperative vs. Declarative Languages

Kowalski
Algorithm = Logic + Control

Imperative/procedural languages:
explicit control
implicit logic

Declarative/non-procedural languages:
implicit control
explicit logic

Examples of declarative languages
logic programming (e.g. Prolog),
functional programming (e.g. Haskell),
markup languages (e.g. HTML), . . .



SQL = Structure Query Language

SQL is a declarative data manipulation language. The user
describes conditions the requested data is required to fulfil.

SQL Query
SELECT ID
FROM CUSTOMER
WHERE NAME = 'Jones' AND CITY = 'Harisson'

More concise than imperative languages:
less expensive program development
easier maintenance

Database system will optimise the query:
decides how to execute the query as fast as possible

Users (usually) do not need to think about efficiency.



Motivation for Database Management Systems

Motivation for database management systems

well-defined data models & data integrity constraints
relational model
meta language for describing

data
data relationships
data constraints

SQL can be used for table and constraint definitions . . .



Relational Model: Schema

Database schema
= structure of the database = relations + constraints

Example schema
customer(id, name, street, city)
account(depositor → customer, accountnr)

Database instance
= actual content (‘state’) of the database at some moment

Example instance
customer

id name street city
1928374 Johnson 12 Alma Palo Alto
0192837 Smith 4 North Rye

account
depositor accountnr
1928374 101343
0192837 215569



Integrity Constraints

Example schema with key constraints
customer(id, name, street, city)
Primary key constraint on id
account(depositor → customer, accountnr)
Foreign key constraint on depositor

Various types of constraints:
data types, constrained data types (domains)
columns constraints (e.g. unique, nullability, counter, . . . )
check constraints (logical expression for domain integrity)
(e.g. age >= 18 AND age <= 150)



SQL DDL (Data Definition Language)

Creating a table with constraints
CREATE TABLE solved (

id INT AUTO_INCREMENT,
name VARCHAR(40) NOT NULL,
homework NUMERIC(2) NOT NULL,
points NUMERIC(2) NOT NULL CHECK (points <= 10),
PRIMARY KEY (id)

);

Note the data types and constraints!

solved
id name homework points

Creating a view
CREATE VIEW solved_homework AS

SELECT id, name, homework FROM solved;



How to Design Database Schemes?

How to design database schemes?

Entity-relationship models (ER models)

UML class diagrams

They are

widely used for database design

usually converted to the relational model



Entity Relationship Model

Entity relationship model
entities = objects

e.g. customers, accounts, bank branches
relationship between entities

e.g. account 101343 is held by customer Johnson
relationship set descriptor links customers with accounts

customer

id
name

street

city

account

account-number

balance

depositor



UML Class Diagram

UML class diagrams
frequently used in database design
similar to E/R diagrams:

Entities/Relationships =⇒ Classes/Associations

Example Schema as UML Class diagram

1 0..*

customer

+id
+name
+street
+city

account

+account-number
+balance

deposits .

/ depositor



Motivation for Database Management Systems

Motivation for database management systems
multiple users, concurrent access

transactions with ACID properties

A transaction is a collection of operations that performs a
single logical function in a database application.

Database management system ensures ACID properties
Atomicity: transaction executes fully (commit) or not at all
(abort)
Consistency: database remains in a consistent state
where all integrity constraints hold
Isolation: multiple users can modify the database at the
same time but will not see each others partial actions
Durability: once a transaction is committed successfully,
the modified data is persistent, regardless of disk crashes



Summary

Why Database Management Systems?
data independence

logical view on the data independent of physical storage
avoidance of duplication

different views on the same database
high-level declarative query languages (what, not how)

efficient data access, automatic query optimisation

data models & data integrity (consistency)
multiple users, concurrent access

transactions with ACID properties
persistent storage, safety and high availability

safety against failure (backup/restore)
scalability (data could by much larger than main memory)

indexing, scalable algorithms

security


