
E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Mock Exam – Answers – Database Fundamental and Applications

General remarks. In this exam you are NOT allowed to

� use a calculator

� use a book

� use a dictionary

� take the exam papers with you

You have two hours for this exam.

PART I: Concepts [27 points]

Question 1. [3 points] Describe how a theta join works in terms of relations, attributes, and tuples. Now, given

relations R(A,B) and S(B,C) also describe how a theta join on the condition R.B = S.B differs from a natural

join.

Answer. The theta join can be considered as the Cartesian product of two relations, where we consider

only a subset of the tuples produced by this product. That is, the tuples that meet the condition specified in

the theta join. Now, given relations R(A,B) and S(B,C), a theta join on the condition R.B = S.B differs

from a natural join in the sense that the natural join keeps only one of the two attributes R.B and S.B with

identical values—the other attribute is projected out. Hence, the schema for the theta join on this condition

has attributes A,R.B, S.B,C whereas the natural join has attributes A,B,C.

Question 2. [3 points] In the relational model of data, relations are conceptualised as sets of tuples. SQL,

however, treats relations as bags of tuples instead. Explain the differences between sets of tuples and bags of tuples,

and give two advantages of the bag-based approach.

Answer. When relations are conceptualised as sets of tuples, duplicates are not permitted, whereas for

bags of tuples, a given tuple may occur multiple times. The bag-approach has two important advantages:

(i) the elimination of duplicates is a computationally expensive operation that we better make sure not to

carry out unless absolutely necessary and (ii) for certain aggregations (e.g. counting the number of tuples for

which a certain condition holds true) we actually want to include the duplicates in our aggregation.

Mock Exam – Answers 1/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Question 3. [3 points] Consider a relation R(A,B,C,D,E) that is decomposed into relations R1(A,B,C) and

R2(C,D,E). What does it mean for the natural join of R1 and R2 not to be lossless?

A. There may be tuples t in R that are not found in R1 ./ R2.

B. There may be tuples t in R1 ./ R2 that are not found in R.

C. Both A and B.

D. There must be tuples t in R1 ./ R2 that are not found in R and, for some instances of R, there may be tuples

t in R that are not found in R1 ./ R2.

Answer. When a join is not lossless this says nothing about particular instances of involved relations.

When we say the join of R1 and R2 is lossless with respect to R, this means that for any instance of R, any

tuple t in the join, R1 ./ R2, must also be present in the original relation, R. Hence, when the join is not

lossless we say that B holds.

Question 4. [3 points] Describe the difference between relations and relationships.

Answer. Relations are the main data structure involved in the relational model: relations can be con-

ceptualised either as sets or bags of tuples. Relationships, on the other hand, are a central concept in ER

diagrams: relationships are used to connect entity sets (which can be conceptualised as abstract objects).

E.g. a car (entity of entity set Cars) has a relationship ownerOf which connects it to an owner (entity of

entity set Owners). Hence, relationships and relations represent two entirely different concepts. However,

when moulding an ER diagram into a relational model, under some circumstance a relationship can in fact

be represented as a relation, where the key attributes of each involved entity set are brought together (e.g.

license plate no. and owner social-security no.).

Mock Exam – Answers 2/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Question 5. [3 points] Explain the difference between SQL tables, virtual views, and materialised views.

Answer. Tables (or base tables) are the essence of a SQL database (e.g. tables with Customers, Products,

Orders, Invoices, etc.). SQL tables are part of the relational schema of the database (i.e. they are created

using the SQL data-definition language or DDL). However, in addition to their schemas being hard-coded in

the database, so are their contents—the actual tuples in the base tables are stored by the DBMS. Virtual

views and materialised views are also both a part of the relational schema (i.e. they are also created using

the SQL DDL). However, both types of views, in terms of the tuples contained therein, are ‘derived products’,

in the sense that the tuples they contain are based on a query of the database. Hence, when one of the

base tables changes, so can the content of the view. Now, the tuples of the virtual view are never stored by

the DBMS—the tuples of the virtual view are computed when they are needed (e.g. when the view is used

instead of a subquery). The tuples of a materialised view, on the other hand, are stored. For a materialised

view the question then becomes how to update the stored tuples as the base tables, on which the view

is based, change. There are two ways to go about this: (i) recompute all tuples in the materialised view

periodically (e.g. once a week) or (ii) update/change the materialised view whenever the underlying base

tables are changed. A final note is in order here: a virtual table is simply a table of which the tuples are

never stored by the DBMS. Hence, a virtual view is a special case of a virtual table: the virtual view is a

special case in the sense that its definition is part of the relational schema. Finally, note that (base) tables,

virtual tables, virtual views, and materialised views are all relations.

Question 6. [3 points] When is a relation said to be in Boyce-Codd Normal Form (BCNF)? What is the use

of decomposing a relation into this form? Explain what the downsides are, if any, to decomposing a relation into

BCNF.

Mock Exam – Answers 3/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answer. A relation R is said to be in BCNF when all its non-trivial functional dependencies (FDs) have a

superkey on the left-hand side. That is to say, there is no non-trivial FD for which something ‘less’ than the

key ‘explains’ some other attributes. Hence, a BCNF violation constitutes a scenario where an attribute

is ‘explained’ by something less than the key (i.e. by something that is not necessarily unique), leading to

redundancy. A proper BCNF-decomposition algorithm decomposes relation R into R1, . . . , Rm such that the

FDs, when projected on Ri for i = 1, . . . ,m, are no longer BCNF violations, while ensuring the join of Ri

for i = 1, . . . ,m is lossless. The first downside of this approach is that some of the original FDs may not be

preserved in the decomposition. The second downside of this approach is that when not using the proper

BCNF-decomposition algorithm but instead e.g. splitting R into relations with only two attributes, the join

of this decomposition need not be lossless.

Question 7. [3 points] Explain what a dirty read is, and also give both an advantage and disadvantage of

allowing dirty reads. You may use practical examples in your explanation.

Answer. Say we have two concurrent transactions, T1 and T2. If transaction T1 is allowed read uncommitted

changes to the database, dirty reads can occur. In this case, T1 can read the database, including changes

made by T2 that have not been committed yet.

Now consider a case where T2 transfers money to bank account A, and T1 tries to transfer money from bank

account A to C. Now, prior to T2 taking place, account A had insufficient funds for T1. However, when

dirty reads are permitted, the moment T2 has transferred money to A, T1 can take place even though the

transfer of T2 has not been committed yet. Now, if T1 is committed, but T2 is rolled back, this leads to an

inconsistent state of the database: money has been transferred from A to C, even though A had insufficient

funds.

In short, dirty reads can lead to a scenario where things are based on information that is ultimately lost,

which is often undesirable, especially for transactions that both read from and write into the database.

However, Example 45, in Chapter 6 of GUM, shows a case where the dirty reads have less detrimental effects,

and may actually be advantageous, as no seat-reservation transactions have to wait for another transaction

to complete, thereby, speeding up the average processing time for booking requests.

Question 8. [3 points] Proper transactions should meet the so-called ACID properties. Explain what these

properties are.

Mock Exam – Answers 4/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answer.

� A = atomicity : transactions should be either completed as a whole or not at all.

� C = consistency : transactions should respect the constraints of the database (e.g. CHECKs, key

constraints, referential-integrity constraints, etc.)

� I = isolation: transactions should be carried out at the proper isolation level. This is the only property

for which there is something to choose: there are various isolation levels, and depending on how much

we care about concurrent transactions possibly affecting the transaction at hand, we set the right

isolation level for the given transaction.

� D = durability : the result of transactions should be durable. Hence, there should be mechanisms in

place to bring the database back into the state it was after all committed transactions e.g. in case of a

power outage.

Question 9. [3 points] Explain how indices can help query your tables more efficiently, and also explain what

trade-offs are involved when deciding on which and how many (sets of) attributes to set as indices.

Mock Exam – Answers 5/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answer. When a set of attributes is set as an index, a tree-like data structure, called a B-tree, is created,

in which we can easily find the nodes that correspond to the tuples with a certain value for the attributes

that constitute the index. E.g. if customerID is an index for some table R, it is easy to find the node in this

B-tree that corresponds to customerID = 282693.

Each node, in turn, contains pointers, showing where the full data of the corresponding tuples is stored on

the storage device. In the example, the DBMS gets the physical location of all tuples WHERE customerID =

282693 on the storage device, and, hence, knows where to look on this device to retrieve the desired data.

Hence, the overall cost of retrieving data using attributes that constitute an index, is – roughly speaking –

equal to price of searching through the B-tree (low costs) plus looking up the full data, based on the pointers

to physical locations on the storage device (also at relatively low costs).

However, as updating a B-tree isn’t free, and updating existing tuples and inserting new tuples into our

table, typically require this B-tree to be updated, it is evident that tables that primarily receive updates and

tuples to be inserted would do better with less indices than tables that are primarily being read.

Finally, when deciding on specific indices, it makes little sense to set an attribute as index which is hardly

ever used in a WHERE clause—if we have to choose between setting attribute set A or B as index, we prefer

the attribute set that is most often used for selection.

PART II: Applications of theory [30 points]

Question 10. [15 points] Consider relation R(A,B,C,D,E) with the following functional dependencies (FDs):

A → D, BC → E, E → A.

Mock Exam – Answers 6/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answers to questions specified below.

i) Find all non-trivial, implied FDs with one attribute on the right-hand side.

{A}+ = {A,D} {A,B,C}+ = {A,B,C,D,E}

{B}+ = {B} {A,B,D}+ = {A,B,D}

{C}+ = {C} {A,B,E}+ = {A,B,D,E}

{D}+ = {D} {A,C,D}+ = {A,C,D}

{E}+ = {A,D,E} {A,C,E}+ = {A,C,D,E}

{A,B}+ = {A,B,D} {A,D,E}+ = {A,D,E}

{A,C}+ = {A,C,D} {B,C,D}+ = {A,B,C,D,E}

{A,D}+ = {A,D} {B,C,E}+ = {A,B,C,D,E}

{A,E}+ = {A,D,E} {B,D,E}+ = {A,B,D,E}

{B,C}+ = {A,B,C,D,E} {C,D,E}+ = {A,C,D,E}

{B,D}+ = {B,D} {A,B,C,D}+ = {A,B,C,D,E}

{B,E}+ = {A,B,E,D} {A,B,C,E}+ = {A,B,C,D,E}

{C,D}+ = {C,D} {A,B,D,E}+ = {A,B,D,E}

{C,E}+ = {A,C,D,E} {A,C,D,E}+ = {A,C,D,E}

{D,E}+ = {A,D,E} {B,C,D,E}+ = {A,B,C,D,E}

The full set of non-trivial FDs with single-attribute right-hand sides is now given by:

A → D ABC → D

E → A ABC → E

E → D ABE → D

AB → D ACE → D

AC → D BCD → A

AE → D BCD → E

BC → A BCE → A

BC → D BCE → D

BC → E BDE → A

BE → A CDE → A

BE → D ABCD → E

CE → A ABCE → D

CE → D BCDE → A

DE → A

Mock Exam – Answers 7/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

ii) List all keys.

There is only one key: K = {B,C}

iii) Indicate which FDs violate Boyce-Codd Normal Form.

The following FDs violate BCNF, as their left-hand side does not include a superkey:

� A → D

� E → A

� E → D

� AB → D

� AC → D

� AE → D

� BE → A

� BE → D

� CE → A

� CE → D

� DE → A

� ABE → D

� ACE → D

� BDE → A

� CDE → A

iv) Decompose R into R1(B,C,E) and R2(A,D,E). Project all given and derived FDs onto R1 and R2.

For R1(B,C,E) only one FD holds: BC → E. For R2(A,D,E) the following FDs hold:

� A → D

� E → A

� E → D

� AE → D

� DE → A

Mock Exam – Answers 8/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

v) Are the decomposed relations in BCNF?

R1 has one key, K1 = {B,C}. Hence, it is in BCNF, as its only FD has K1 on the left-hand side.

R2 has one key K2 = {E}. Hence, it is not in BCNF—it has one FD (i.e. A → D) that does not

contain K2 as subset on the left-hand side.

vi) For the FDs projected onto R1: find the minimal basis. Do the same for the FDs projected onto R2.

The minimal basis of FDs for R1 is simply the single FD itself, i.e. B1 = {BC → E}.

The minimal basis of FDs for R2 is given by B2 = {A → D,E → A}.

vii) Based on these minimal bases for the FDs of R1 and R2, what set of FDs do they imply for R1 ./ R2?

Is this set equivalent to the set of FDs that holds for R?

The FDs in the join, are simply given by the union of B1 and B2, and then using the closure algorithm

to find all implied FDs. Now, by merely considering B1 ∪ B2, we already see we retrieve the initial

three FDs for R that we started with. Hence, the complete set of implied FDs by B1 ∪ B2 will be

identical to the complete set of implied FDs for R. Hence, all FDs are preserved in this decomposition.

viii) Use the chase test to assert whether the join of R1 and R2 is lossless.

We begin by setting up a tableau, representing an instance of R, where arbitrary tuple t = (a, b, c, d, e),

which is for sure present in the join, is ‘spread’ over as many rows as possible in R, where we aim to

show t must actually be a single tuple in R, proving the join is lossless. Initial tableau:

A B C D E

a1 b c d1 e

a b2 c2 d e

E → A ⇒

A B C D E

a b c d1 e

a b2 c2 d e

A → D ⇒

A B C D E

a b c d e

a b2 c2 d e

We see in the final tableau that any tuple t in the join is for sure also a tuple in R. Hence, the join is

lossless.

Mock Exam – Answers 9/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

ix) Would there be any advantage to decomposing this relation into third normal form (3NF) using the

synthesis algorithm? Explain why or why not.

The big advantage of the 3NF-synthesis algorithm is that it eliminates much redundancy from FDs

(though not necessarily all) while preserving for sure all FDs from the original relation. We see that

our decomposition of R into R1 and R2 also preserves all original FDs in R. Hence, regarding FD

preservation, the 3NF-synthesis algorithm provides no advantage here.

However, regarding redundancy, we can observe that the 3NF-synthesis algorithm would have yielded

three relations, R1(A,D), R2(E,A), and R3(B,C,E). These three relations preserve FDs and, by

virtue of the decomposition algorithm, have a lossless join. Furthermore, we can observe these three

relations are all in BCNF. Hence, one could argue that even though our decomposition preserves the

FDs and has a lossless join, just like the 3FN-synthesis algorithm, the 3NF approach in this particular

case is likely to have less redundancy in the decomposition than our decomposition has.

Question 11. [15 points] The director of a theatre asks you to set up a database system for the sales of tickets

to customers for different performances of a show. The director provides you with the following information:

� Each show has a name and producer.

� For each show there are one or more performances (unless the show is cancelled altogether).

� In each performance exactly one show is performed.

� Each performance has a date, time, and hall in which it takes place.

� Each performance has a crew consisting of one or more crew members.

� Each member of the crew has a name, birth date, and role.

� Tickets are sold for each performance.

� Each ticket constitutes a reservation of one seat for one performance.

� Each ticket has a price and a seat number.

� Each ticket can be bought by at most one customer.

� Each customer can hold multiple tickets. Each customer has a name and address in the system.

Mock Exam – Answers 10/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answers to questions specified below. Using this information:

i) Draw an appropriate entity-relationship (ER) diagram for this database.

Figure 1 shows a possible ER diagram that meets the set requirements. Note that the question left

some room for ambiguity. Whatever you decide e.g. in terms of key attributes should simply make

sense and/or be explained.

Note that for Shows, I assumed the name to be the only key attribute. For CrewMembers, name and

birthDate constitute the key. For Customers, name and address form the key.

ii) Are there any weak entity sets in your diagram? If so, explain why they are weak entity sets.

Similar to seat reservations on a flight, here the Tickets for seats are a weak ES. That is to say, for a

given ticket in Tickets, for a given seatNo., bought at a given price, by a given customer in Customers,

there is exactly one corresponding performance in Performances. Moreover, a ticket cannot be identified

merely on the basis of seatNo. and/or price. However, seatNo. in combination with the key attributes

of the supporting ES Performances, suffice to identify Tickets.

Figure 1. ER diagram following specifications in Question 12, Point i.

Mock Exam – Answers 11/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

iii) What are the referential-integrity constraints?

Obviously, as Tickets is weak ES, it places a referential-integrity constraint on its supporting ES,

Performances. Moreover, ES Performances places a referential-integrity constraint on Shows. Finally,

Tickets does not place a referential-integrity constraint on Customers—even though the relationship is

many-one from Tickets to Customers, the specification allows for there to be tickets without a customer

(yet!).

iv) Convert the ER-diagram to a set of relations, in accordance with the rules you have learnt in Ch. 4.

Based on the relevant many-one relationship, and the fact that Customers only has key attributes, we

can absorb Customers into our relation for Tickets. Moreover, as Tickets is a weak ES, we must also

include the key attributes from Performances.

As Performances places a referential-integrity constraint on Shows, and Shows has an attribute that is

not key (i.e. producer), we can only incorporate the relationship performanceOf in Performances.

In addition, we need separate relations for crewOf and crewMembers, as Performances and CrewMembers

have a many-many relationship.

Finally, note that even though it appears to be possible to include Performances in the relation for

Tickets as a whole (as it has no non-key attributes), there is an important reason to decide against this:

the relation for Performances will incorporate the performanceOf relationship and, therefore, from the

perspective of Performances, it will have an attribute that is not key for that relation: name of the

show. Hence, inclusion of Performances in the relation for Tickets will lead to unnecessary redundancy,

while having it as a separate relation will not lead to such redundancy.

Hence, the final set of relations is as follows:

� Performances(hall, date, time, nameShow)

� Shows(name, producer)

� crewOf(hallPerf, datePerf, timePerf, nameCrwMmbr, birthDateCrwMmbr)

� CrewMembers(name, birthDate, role)

� Tickets(seatNo., hallPerf, datePerf, timePerf, price, nameCustomer, addressCustomer)

Mock Exam – Answers 12/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

v) Setting aside all ESs other than Shows: draw an ER-diagram focussing exclusively on Shows, which

allows you to distinguish between a ballet, a musical, and a regular play, where

� a ballet has a fixed crew of one or more ballet dancers as well as an orchestra consisting of multiple

musicians,

� a musical has a fixed crew of one or more actors as well as an orchestra consisting of multiple

musicians, and

� a regular play has a fixed crew of one or more actors.

Figure 2 shows the appropriate hierarchy for Shows, assuming both Dancers, Musicians, and Actors

have only two attributes: name and birthDate, both being key attributes.

Figure 2. ER diagram following specifications in Question 12, Point v, focussing on the hierarchy for Shows.

Mock Exam – Answers 13/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

PART III: SQL queries [33 points]

We have data from an airline company on three relations, Flights, Seats, and Bookings, shown in Tables 1, 2,

and 3 respectively.

flightNo date plane time dest

1031 2019-12-01 908 09:12 LCY
1032 2019-12-01 908 12:29 RTM
0134 2019-12-02 671 10:09 VIE
0135 2019-12-02 671 15:43 AMS

Table 1. Relation Flights

plane row number class

671 1 A business
671 1 B business
671 1 E business
671 1 F business
671 2 A business
671 2 B business
671 2 E business
671 2 F business
671 3 A economy
671 3 B economy
671 3 E economy
671 3 F economy
671 4 A economy
671 4 B economy
671 4 E economy
671 4 F economy
908 1 A business
908 1 B business
908 1 E business
908 1 F business
908 2 A business
908 2 B business
908 2 E business
908 2 F business
908 3 A economy
908 3 B economy
908 3 E economy
908 3 F economy
908 4 A economy
908 4 B economy
908 4 E economy
908 4 F economy

Table 2. Relation Seats

Mock Exam – Answers 14/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

flightNo date seatRow seatNo price customerID

1031 2019-12-01 1 A 800 1209495
1031 2019-12-01 3 A 120 1689312
1031 2019-12-01 3 B 130 3429123
1031 2019-12-01 3 E 110 4292135
1031 2019-12-01 3 F 130 9329401
1031 2019-12-01 4 A 180 3949123
1031 2019-12-01 4 E 140 3126902
1032 2019-12-01 1 B 650 4783013
1032 2019-12-01 2 F 750 4539231
1032 2019-12-01 3 A 110 1263912
1032 2019-12-01 3 B 90 2131230
1032 2019-12-01 3 E 100 4502343
1032 2019-12-01 4 A 120 1839694
1032 2019-12-01 4 E 100 8924922
1032 2019-12-01 4 F 130 7255242
0134 2019-12-02 1 A 1500 7324723
0134 2019-12-02 1 E 1700 2139067
0134 2019-12-02 2 F 1100 6589123
0134 2019-12-02 3 E 210 4589212
0134 2019-12-02 4 B 190 9648324
0135 2019-12-02 1 B 1300 5839149
0135 2019-12-02 2 E 1200 8573271
0135 2019-12-02 3 A 180 5182542
0135 2019-12-02 3 B 180 6581298
0135 2019-12-02 4 A 150 1231205
0135 2019-12-02 4 B 160 8132984
0135 2019-12-02 4 F 170 3210935

Table 3. Relation Bookings

Mock Exam – Answers 15/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Question 12. [11 points] Write a SQL query to compute the total amount money spent on bookings for each

flight and each class. Note that by flight I mean the combination of flightNo and date. Also provide the result of

this query.

Answer.

SELECT Flights.flightNo, Flights.date, class, SUM(price) AS total

FROM Flights, Seats, Bookings

WHERE Flights.plane = Seats.plane AND Flights.flightNo = Bookings.flightNo

AND Flights.date = Bookings.date AND row = seatRow AND number = seatNumber

GROUP BY Flights.flightNo, Flights.date, class;

flightNo date class total

1031 2019-12-01 business 800

1031 2019-12-01 economy 810

1032 2019-12-01 business 1400

1032 2019-12-01 economy 650

0134 2019-12-02 business 4300

0134 2019-12-02 economy 400

0135 2019-12-02 business 2500

0135 2019-12-02 economy 840

Question 13. [11 points] Write a SQL query to compute the number of seats available on each flight, in each

class. Note that by flight I mean the combination of flightNo and date. Also provide the result of this query.

Mock Exam – Answers 16/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answer.

SELECT flightNo, date, class, COUNT(number) AS availSeats

FROM Flights, Seats

WHERE Flights.plane = Seats.plane

AND (row, number) NOT IN (

SELECT seatRow, seatNo FROM Bookings

WHERE Flights.flightNo = Bookings.flightNo AND Flights.date = Bookings.date

)

GROUP BY flightNo, date, class;

flightNo date class availSeats

1031 2019-12-01 business 7

1031 2019-12-01 economy 2

1032 2019-12-01 business 6

1032 2019-12-01 economy 2

0134 2019-12-02 business 5

0134 2019-12-02 economy 6

0135 2019-12-02 business 6

0135 2019-12-02 economy 3

Question 14. [11 points] Write a SQL query to show which rows on which flights are still completely empty

(i.e. for which there is no single booking). Note that by flight I mean the combination of flightNo and date. Also

provide the result of this query.

Mock Exam – Answers 17/18



E EOR2 DBFA, 2019/2020 Database Fundamentals and Applications

Answer.

SELECT DISTINCT flightNo, date, row

FROM Flights, Seats

WHERE Flights.plane = Seats.plane

AND row NOT IN (

SELECT seatRow FROM Bookings

WHERE Flights.flightNo = Bookings.flightNo AND Flights.date = Bookings.date

);

flightNo date row

1031 2019-12-01 2

Mock Exam – Answers 18/18


