
Exam Data Structures and Algorithms 2018-2019

Tuesday October 23, 15.15-18.00

6 exercises

Exercise 1. (5+5+5 points)

This exercise is concerned with sorting.

(a) Give in terms of O the worst-case time complexity of insertion sort, se-
lection sort, merge sort, quicksort, heapsort, and the average-case time
complexity of bucket sort. No motivation needed.

(b) Consider the array A = [5, 1, 2, 4, 3, 6].

Apply ‘on the fly’ heapsort to A. You may give your answer in pictures.

(c) Consider the pseudo-code for partition; the input is an array A of natural
numbers, and indices p and r of A.

Algorithm partition(A, p, r):

x := A[r]

i := p− 1

for j = p to r − 1 do

if A[j] ≤ x then

i := i + 1

exchange A[i] with A[j]

exchange A[i + 1] with A[r]

return i + 1

Give pseudo-code for the algorithm quicksort that takes as input an array,
and two indices in that array. You may use the algorithm partition.

Exercise 2. (5+5 points)

This exercise is concerned with sorting.

(a) Give an example of (i) a sorting algorithm that can be in-place; (ii) a
sorting algorithm that in best-case performs in Θ(n) with n the size of the
input-array; (iii) a sorting algorithm that is stable. No motivation needed.

(b) Statement: it is possible that an algorithm for max-heapify in Θ(1) will
be found. Is this statement true or false? Explain your answer.

1



Exercise 3. (4+6+5 points)

This exercise is concerned with linear data structures.

(a) Suppose we wish to implement a max-priority queue. Give for the opera-
tions for inserting and deleting the worst-case time complexity in terms of
O, for the case we implement our max-priority queue using (i) an unorde-
red array; (ii) an ordered array; (iii) a max-heap. No motivation needed.

(b) Give an implementation (use pseudo-code) of a stack with operations push
and pop, both in O(1), using a singly linked list, where we have the fol-
lowing: for an element x in the list, we have operations x .next and x .key
with the suggested meaning. For a list L we have operation L.head .

Also informally explain why your operations have the desired complexity.

(c) We consider a hash table of size m. We solve collisions by open addressing
with double hashing. Explain informally how to add an item with key k.

Exercise 4. (4+5+3+5 points)

This exercise is concerned with binary search trees and AVL-trees.

(a) What is the worst-case time complexity, in terms of O, of adding an ele-
ment to (i) a Binary Search Tree (BST) consisting of n elements, (ii) a
min-heap consisting of n elements, (iii) a AVL-tree consisting of n ele-
ments? No motivation needed.

(b) Construct an AVL-tree by inserting one by one the keys

5 3 4 6 7 2 1

starting from the empty tree. After each insertion, rebalance the tree if
needed. Give your answer in pictures.

(c) Give in a picture the result of removing the node with key 2 from the
following binary seach tree:

2

1 4

3

(d) Consider binary search trees where all keys are different. Consider (infor-
mally) the operations for insertion and deletion. Give in (a) picture(s) an
example showing that first inserting and then deleting can give another
result than first deleting and then inserting.

2



Exercise 5. (5+5+5 points)

Consider the Fibonacci numbers defined by F0 = 0, F1 = 1, and Fi = Fi−1+Fi−2

for i ≥ 2.

(a) Give a naive recursive algorithm for computing the nth Fibonacci number.

(b) Give a recurrence equation describing the worst-case time complexity of
your naive recursive program, and solve it to give the worst-case time
complexity for computing the nth Fibonacci number.

(c) Give a dynamic programming algorithm for computing the nth Fibonacci
number that is in O(n); explain informally why it is in O(n).

Exercise 6. (5+4+5+4 points)

Consider the dynamic programming algorithm for knapsack01:

Algorithm knapsack01(S,W ):

new B[0 . . . n, 0 . . .W ]

for w := 0 to W do

B[0, w] := 0

for k := 1 to n do

B[k, 0] := 0

for w := 1 to W do

if wk ≤ w then

B[k,w] := max(B[k − 1, w], B[k − 1, w − wk] + bk)

else

B[k,w] := B[k − 1, w]

(a) Apply the algorithm to maximal weight W = 5 and the following set S
with items with benefit and weight:

b w
s1 3 2
s2 2 1
s3 4 3

Give your answer in the form of a table representing B, with from left to
right w increasing, and from top to bottom k increasing.

(b) Explain why for the knapsack01 problem, the greedy choice for an item
with the largest benefit does not necessarily lead to an optimal solution.

(c) Adapt the algorithm so that is uses only an array B[0 . . .W ].

(d) We adapt the setting: every item has benefit 1. Can we simplify the
algorithm, and if so, how? Explain informally.

3


