Exam Data Structures and Algorithms 2016-2017

Tuesday October 25, 2016, 15.15-18.00

7 exercises

Explain your answers unless otherwise speficied!

Exercise 1. (4+4+5 points)

This exercise is concerned with selection sort.

```
Algorithm selectionSort(A, n):
```

```
\begin{aligned} &\text{for } i := 1 \text{ to } n-1 \text{ do} \\ &m := i \\ &\text{for } j = i+1 \text{ to } n \text{ do} \\ &\text{ if } A[j] < A[m] \text{ then} \\ &m := j \\ &x := A[m] \\ &A[m] := A[i] \\ &A[i] := x \end{aligned}
```

- (a) Apply 'in detail' selection sort to the input A = [4, 3, 1, 5, 2] and n = 5. Indicate clearly what happens for every i and j.
- (b) Give and explain the worst-case time complexity of selection sort in terms of Θ .
- (c) Give an invariant that can be used to show correctness of selection sort. Explain why your invariant gives correctness.

Exercise 2. (4+4+4+4 points)

- (a) Apply 'on the fly' the algorithm for bottom-up max-heap construction to the array [1, 2, 3, 4, 5, 6, 7]. You may use pictures.
- (b) Start from the max-heap obtained as answer to (a), and continue with applying heapsort 'on the fly'. You may use pictures.
- (c) What is the worst-case, and what is the best-case time complexity of heapsort in terms of \mathcal{O} ? No motivation needed.
- (d) Explain informally (no pseudo-code needed) but clearly how heapsort can be adapted to sort an array of natural numbers in *decreasing* order.

Exercise 3. (4+4+5 points)

This exercise is concerned with singly linked lists. In a node v we have operations v.next and v.element with the suggested meaning. For a list L we have operations L.first and L.last with the suggested meaning. Do not assume predefined operations on lists.

- (a) Give in this setting an implementation of a stack with operations push and pop.
- (b) Give and explain the worst-case time complexity in terms of \mathcal{O} of your operations push and pop from (a).
- (c) Give pseudo-code for a $\Theta(n)$ -time non-recursive procedure that reverses a singly-linked list of n elements, only using a constant amount of additional storage. Briefly indicate why your algorithm is in $\Theta(n)$.

Exercise 4. (4+4+4 points)

This exercise is concerned with binary search trees (BSTs) and AVL-trees.

- (a) What is the worst-case height of a BST with n keys? What is (approximately) the worst-case height of a AVL-tree with n keys? For both: no motivation needed.
- (b) Give all possible BSTs with keys 1, 2, and 3. Indicate for every BST whether it is an AVL-tree or not.
- (c) Construct an AVL-tree by inserting one by one the numbers

$6 \ 4 \ 5 \ 3 \ 1 \ 7 \ 2$

starting from the empty tree. After each insertion, rebalance the tree if needed. Give your answer in pictures (with comments if needed).

Exercise 5. (5+4+5 points)

Consider the algorithm for a longest common subsequence (LCS) of input sequences $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$:

Algorithm LCS(X,Y): new array $C[0 \dots m, 0 \dots n]$ for i := 0 to m do C[i,0] := 0for j := 0 to n do C[0,j] := 0for i := 1 to m do for j := 1 to m do if $x_i = y_j$ then C[i,j] := C[i-1,j-1] + 1else C[i,j] := max(C[i,j-1], C[i-1,j])return C

- (a) Apply the LCS algorithm to the following sequences: $X = \langle R, O, B, O, T, S \rangle$ and $Y = \langle D, R, O, N, E, S \rangle$. Give also explicitly the longest common subsequence(s) that is (are) found.
- (b) Give and explain the worst-case time complexity of the LCS algorithm in terms of \mathcal{O} .
- (c) Can we improve the space complexity of the LCS algorithm? Explain why and (informally) how, or why not.

Exercise 6. (4+5 points)

Given a set S of activities a_i , each with start time s_i and finish time f_i . Two activities a_i and a_k are *compatible* if $f_i \leq s_k$ or $f_k \leq s_i$. The activity selection problem is to find a maximal-size subset of S consisting of compatible activities.

- (a) Give an example showing that repeatedly choosing a compatible task with shortest duration time does not necessarily yield an optimal solution for the activity selection problem.
- (b) Show the correctness of the greedy choice for an activity with smallest finish time.

Exercise 7. (4+4+5 points)

This exercise is concerned with string matching and varia.

- (a) What is the number of steps used by the brute-force string matching algorithm applied to the pattern $P=a\,a\,b$ and the text $T=a^{1000}b$? Here $a^{1000}b$ is the string consisting of first thousand a's and then one b.
- (b) Apply 'on the fly' the Knuth-Morris-Pratt string matching algorithm to the pattern $P=a\,a\,a$ and the text $T=b\,a\,b\,a\,a\,b\,a\,a\,a$.
 - Give and number all steps.
 - You do not have to give the failure function explicitly.
- (c) We consider arrays of length n containing in increasing order all numbers $0, \ldots, n$ except for one (the 'missing number'). An example with n = 5 is A = [0, 1, 3, 4, 5], where 2 is the missing number.
 - Give (not necessarily in pseudo-code) an algorithm in $\mathcal{O}(n)$ that takes as input such an array A and its length n, and gives back as output the missing number.