Question 1: Asymptotic Analysis (23 points)

Solve the following recurrence relations using the method specified in each exercise. Your final
result should be in the form of an upper bound O(f(n)) for the tightest possible function f(n).

Note: When applying each method, clearly explain intermediate steps, i.e. do not simply state
the final result without explanation.

(a) (4 points) Solve T'(n) = 3-T(n/9) + /n for n > 9 with T'(n) = 1 for n < 9 using the master
theorem.

(b) (6 points) Solve T'(n) = 2-T(n/4)+n? for n > 4 with T(n) = 1 for n < 4 using the recursion
tree method. You may assume that n is a power of 4.
Note: A description of the tree structure in text form is sufficient, you do not need to draw
the tree.

(c) (6 points) Solve T'(n) = T(n/2) + T(n/3) + n? for n > 3 with T'(n) = 1 for n < 3 using the
substitution method.

For the following two exercises, provide a short formal proof.

(d) (3 points) Show that T'(n) = 2n+/n is not O(n).

(e) (4 points) Show that T'(n) = 231°8:()/1ogs(2) i5 @(n?).

SOLUTION:

(a) We write T'(n) in standard recurrence form for a = 3, b =9 and d = 0.5. Since a > 1,b > 1
and d > 0, the master theorem applies. Since ¢ = 3 = 3 = b?, the master theorem gives

T(n) = O(nlogy(n)) = O(y/nlog, (n)).

(b) Draw a tree where each node has 2 branches and the node size is i at level k.
The total work at level £k =0,1,... is
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The tree starts at level £ = 0 and the last level has subproblem size 1 with 1 = & < k =
log,(n). Hence, the runtime of the algorithm is
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To bound the runtime expression, we use the bound for a finite geometric series we discussed
in lecture 3 with
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Applying this with r = 1/8 < 1 gives

T(n)=c-



(c) We guess T'(n) = O(n?) and use the following inductive proof

e Inductive hypothesis: T(n) < c-n? for some ¢,ng and n > ng
e Inductive basis: T(1) =1<c-12eg. c=2and ng =1

e Inductive step: Let ng < m < k < n and assume the inductive hypothesis holds for
all m. Then

T(k) = T(k/2) + T(k/3) + k*
<c- (k)24 c- (k/3)* + k2 (inductive hypothesis)
=2-K/4+2-K*/9 + k?
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e Conclusion: For k = n, we have by the inductive hypothesis that T'(n) < c-n? for

n > ng with ¢ =2, ng = 1.

(d) (Proof by contradiction) Assume that 7(n) = O(n). Then, there exist ¢,ng > 0 s.th.
V n > ng, it holds that

T(n)<c-n
& 2nyn<c-on (divide by n > 0)
& 2yn<ec

which is a contradiction since y/n cannot be bounded above by a constant.

(e) To prove the asymptotic bound, we need to show that there are constants ng, c1, ca > 0 s.th.
for all n > ng it holds that T'(n) < ¢z -n® and T(n) > ¢; - n?.

T(n) — 23~10g3(n)/10g3(2)
— 93logy(n) (change of logarithm basis)

— p31og2(2) (logarithm change of exponential basis)
3

3

Therefore, for example for ng = 1 and ¢; = ¢ = 1 it holds that T'(n) < ¢z - n® and

T(n) > ¢ - n? and hence we have shown that T'(n) = O(n?).



Question 2: Recursive InsertionSort (21 points)

This exercise analyzes a recursive version of the InsertionSort algorithm. The algorithm
follows the same idea as the iterative version of the algorithm we discussed in Lecture I of the
course, but instead of looping through the array, it uses recursive function calls to sequentially
sort the array.

Specifically, the algorithm proceeds as follows. Given an array A with n elements, the algorithm
first recursively calls itself to sort the first n—1 elements of the array. Then, the algorithm moves
the last element A[n] to its correct position to yield a completely sorted array. Specifically, the
algorithm inspects all elements ordered before A[n| and moves them up one index until it finds
the index where A[n| should be inserted.

(a)

(7 points) Based on the description of the algorithm above, provide pseudo-code for a routine
called RecInsertionSort(A,n) that implements the recursive InsertionSort algorithm.

Note: When writing the pseudo-code, you should use one-based indexing for the array A i.e.
the first element of A is A[l] and the last element is A[n].

(7 points) Analyze the best-case and worst-case runtime of the RecInsertionSort(A,n)
algorithm. For each of the two cases (best-case and worst-case):

(i) Clearly state which choice of A leads to this case
(ii) Provide a recurrence equation for the runtime in that case based on the pseudocode
from (a)

(iii) Provide an upper bound O(f(n)) on the runtime in that case, where the bound is as
tight as possible.

(7 points) Prove formally that the RecInsertionSort(A,n) algorithm is correct. In your
proof, make sure you clearly state the recurrence invariant condition (inductive hypothesis).

Note: If you struggle with providing a formal proof for the inductive step, try first to carefully
explain the intuition behind the proof, then try your best to make the proof as formal as
possible.



SOLUTION:

(a)

The following pseudo-code implements the recursive version of InsertionSort described in
the exercise.

Algorithm: RECINSERTIONSORT(A, n)

1 // Handle the base case

N
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if n <1 then

L return

// Recursively sort first n — 1 elements of the array
RECINSERTIONSORT(A,n — 1)

// Correctly place the n-th element in the sorted array

last = A[n]
j=n-—1
while j > 0 and A[j] > last do
L Alj+1] = Alj]
J=J—-1
Alj+ 1] = last
return

The runtime of the algorithm consists of the runtime spent on the recursive call in 1.5 plus
the runtime required to insert the last element and return (1. 7-13).

Worst-case runtime. In the worst-case, the array is sorted in inverse order. Hence, the
while loop traverses through n — 1 elements with constant time required inside the loop
to move elements, giving O(n) runtime for 11.7-13. The recursive call is on the first n — 1
elements of the array and takes T'(n — 1) time. Hence, the runtime recursion is

T(n)=T(n—1)4 O(n), with T(1) = O(1)
This recursion can be solved directly by repeatedly substituting 7'(k) for k = n—1,n—2,...,1

Tn)=Tn—-1)+0n)=Tn—-2)+2-0(n)=---=n-0(n) =O(n?

Best-case runtime. In the best case, the array is already sorted in ascending order and
the while loop only checks the condition once, then exits, giving O(1) runtime, in addition
to the runtime of the recursive call, T'(n — 1).

T(n)=T(n—1)+0O1)  with T(1) = O(1)

Solving the recurrence gives best-case runtime n - O(1) = O(n).



(¢c) We prove correctness of the algorithm by induction on the size of the array n

¢ Recurrence invariant condition: Assume the recursive call to RECINSERTIONSORT(A, k)
correctly sorts the elements of A[1,... k] for 1 <k <n.

e Inductive basis: We need to show that the inductive hypothesis holds for &k = 1
i.e. RECINSERTIONSORT(A, 1) correctly sorts the elements of A[l,...,1] = A[l]. Since
Al[l] only contains one element, it is trivially sorted by definition and the inductive
hypothesis holds.

e Inductive step: Assume that the inductive hypothesis holds for recursive calls of size
m where 1 < m < k < n. We need to show that the inductive hypothesis holds for &
i.e. that RECINSERTIONSORT(A, k) correctly sorts the elements of A[l,..., k].

By the inductive hypothesis, we know that the call to RECINSERTIONSORT(A,k —
1) in L5 correctly sorts the elements in A[l,...,k — 1]. Let * € [1,...,k — 1] be
the largest position such that A[i*] < A[k]. The while loop transforms the array
{A[1],..., A[#*],..., Alk — 1], A[k]} to {A[1],..., A[i*], A[k], Ai* +1],..., A[k — 1]}. Tt
remains to show that the latter array is sorted which follows from the following three
observations.
1. By definition of i*, {A[i*], A[k], A[i* + 1]} is sorted.
2. Further, by the inductive hypothesis, it holds that A[i*] > A[j] for all j < i* so
that the array left of A[k] is sorted
3. Similarly, by the inductive hypothesis, A[i* + 1] < A[j] for all j > i* 4+ 1 so that
the array right of A[k] is sorted

Hence, {A[1],..., Ali*], Alk], A[i* +1],..., A[k — 1]} is sorted.

e Conclusion: By induction, the outer call RECINSERTIONSORT(A, n) correctly sorts
the elements of A[l,...,n] which proves correctness of RECINSERTIONSORT.



Question 3: Dynamic Programming (21 points)

Setup: A large company that runs a popular video streaming platform hires you as a data
science consultant. The company wants to find out how to optimally place advertisements in
its content to maximize its ad-revenue using a dynamic programming algorithm. Specifically,
given a video of length n minutes, the company wants to decide at which minutes of the video
to place an ad. In their initial briefing, they inform you of the following assumptions.

e For technical reasons, ads can only be placed at every full minute i.e. at i =1,2,...,n.

e While from a technical standpoint it would be possible to place an ad at every minute
i =1,...,n of the video, market research reveals that ads should not be placed within &
minutes of each other, as this would lead the viewers to be frustrated and stop using the
platform immediately. That is, if you place an ad at minute j of the video, the previous
ad can be placed latest at minute j — k — 1. You may assume that 0 < k <n — 2.

e The advertising department of the company has negotiated a list of prices to charge their
advertising partners, denoted by P = [p1,...,p,] where p; is the price the advertising
partner pays to the company for placing an ad at minute i = 1,...,n.

Optimal substructure: To help you get started, the first three exercises guide you through
deriving the optimal substructure of the problem. We will focus on the problem where in a video
of length 4, you have already optimally placed ads throughout minutes j =1,...,7 — 1 and are
currently deciding whether to place an ad at minute 7. In this problem, you face the following
two choices:

A. Do not place an ad at minute ¢

B. Place an ad at minute ¢ and potentially remove any ads in the previous k minutes.

The first three exercises below ask you to find an expression for the revenue r; from optimally
placing ads in a video of length 4, taking into account these two choices. The remaining exercises
then ask you to write and analyze the algorithm.

(a) (4 points) Assume i > k. For both choices A and B, write down an expression for the
revenue r; from optimally placing ads in a video of length .

Note: Your answers should be in a recursive form i.e. depend on some r; where j < i.

(b) (3 points) Assume 0 < ¢ < k. Think about whether and how you would need to modify your
answer to (a) in this case. Again, for both decisions A and B, write down an expression for
the revenue r; from optimally placing ads in a video of length 4.

(¢) (4 points) Based on your answers to (a) and (b), provide a general recursion for the revenue
from optimally placing ads in a video of length .

Note: Make sure that in your answer you clearly distinguish between the different cases for
i and do not forget to specify the base case.

(d) (7 points) Based on the optimal-revenue recursion from (c), provide pseudo-code for a
bottom-up dynamic programming routine called PLACEADS(n, P, k) that returns the revenue
from optimally placing ads in a video of length n, given the price array P and a value for k
with 0 < k <n —2.

(e) (3 points) Analyze the runtime of your dynamic programming algorithm based on the
pseudo-code. Your final result should be in the form of an upper bound O(f(n)) for tightest
possible function f(n).



SOLUTION:

(a)

In case A, we do not place an ad at minute 7 and hence our revenue from optimally placing
ads is r; = r;—1. In case B, we place an ad at minute ¢ and potentially remove all ads within
k minutes, giving r; = r;_x_1 + PJi].

The revenue for decision A has not changed i.e. it still holds that r; = r;_1. For decision B,
we now have that the revenue from optimally placing ads is r; = PJi].

The optimal decision maximizes the revenue from optimally placing ads with choices A and
B. Hence, we have the general recursion

0 if i=0
ri = § max {r;_1, P[i]} if 0<i<k
max {r;—1,7i—k—1 + P[]} if i>k

The pseudo-code for the bottom-up dynamic programming algorithm is as follows.

Algorithm: PlaceAds(n, P, k)

Let = [0,...,n] be a new array
r[0] =0
fori=1to n do
if i < k then
‘ r[i] = max(r[i — 1], P[i])
else

L r[i] = max(r[i — 1],r[i — k — 1] + P[i])

return r[n|

To analyze the runtime, we inspect the pseudo-code and derive the runtime of each block of
the algorithm. The set-up and return in 11.1-2 and 1.8, respectively, each have runtime O(1).
The for-loop has ©(n) iterations while performing O(1) computations in 1. 4-7. Hence, the
total runtime of the dynamic programming algorithm is

T(n)=0(1)+0O(n)=0(n)

that is the algorithm has linear runtime.



Question 4: Short statements (15 points)

For each of the following statements, indicate whether the statement is correct or incorrect. If
it is correct, give a brief motivation (= 2-3 sentences) of why it is correct. If it is incorrect,
provide a brief motivation (=~ 2-3 sentences) of why it is incorrect.

(a)

(3 points) The master theorem can be applied to the recursion T'(n) = 0.5 - T(n/2) + /n.

SOLUTION: Incorrect. If we try to write the recurrence in standard recurrence form, we
get a = 0.5,b =2 and d = 0.5. However, the master theorem only applies if a > 1,b > 1 and
d > 0 (slide 11, lecture III). Hence, the master theorem can not be applied to this recursion.

(3 points) The expected runtime of a randomized algorithm is generally not the same as the
runtime of the algorithm for an expected input.

SOLUTION: Correct. The expected runtime takes expectation over the distribution of
choices the algorithm makes, not expectation over the distribution of possible inputs (slide
5, lecture V). Hence, generally the expected runtime is not the runtime for an expected
input.

(3 points) With universal hashing, we choose the shape of the hash function completely at
random.

SOLUTION: Incorrect. With universal hashing, we randomly choose a hash function from
a pre-defined set of hash functions called the universal hash family. Hence, the shape of
the function is not completely random, but one of the previously defined shapes (slide 25,
lecture VI). In fact, in the example we discussed in the lecture (slide 28, lecture VI), the
shape of the function was the same for all hash functions in the set, only the coefficients of
the hash function were chosen at random.

(3 points) The following binary search tree is a valid red-black tree. [Red nodes are printed
in light gray while black nodes are printed in black.]

SOLUTION: Incorrect. The tree above violates the red-black properties (slide 23, lecture
VII). Specifically, it violates property #4 (if a node is red, then both its children are black)
for node 10. In addition, it violates property #5 (for each node, all simple paths from the
node to descendant leaves contain the same number of black nodes) since the path 6 — 9
has less black nodes than the other paths.



(e) (3 points) The adjacency-matrix and adjacency-list representations of a graph G have the
same space requirements when storing a completely dense graph in memory.

SOLUTION: Correct. The space requirements to store a graph G are O(n?) for an adjacency-matrix
representation and O(n + m) for an adjacency-list representation (slide 11, lecture VIII).

For a completely dense graph m = n? (slide 6, lecture VIII). Hence, both representation

have a O(n?) space requirement.



