DATA STRUCTURES AND ALGORITHMS — Block 1, 2018

FINAL EXAM - ANSWER SHEET

1 Problem 1 (35pt)

In each of the following question, please specify if the statement is true or false. If the
statement is true, explain why it is true. If it is false, explain what the correct answer is and
why. (For each question, 2 points for the true/false answer and 3 points for the explanations.)

(a) (5pt) If f(n) = O(g(n)) and f(n) = Q(g(n)), then we have f(n) = g(n).
Answer: False. f(n)=0(g(n)).

(b) (5pt) If fi(n) = Q(g1(n)) and fa(n) = Q(g2(n)), then fi(n) x fa(n) = Q(g1(n) X g2(n))

Answer: True.

fi(n) = Q(g1(n)) = There ezists positive constants ny and ¢y such that fi(n) >
c1g1(n) for alln > ny.

fa(n) = Q(g2(n)) = There exists positive constants ny and co such that fo(n) >
c2g2(n) for all n > ns.

So we can find positive constants ¢ = cica and ng = max{ny,na} such that fi(n) x
fa(n) > ¢ x g1(n) x go(n) for all n > ny.

Then f(n) % fo(n) = Q(gr(n) X ga(n)).

(c) (5pt) 2" +n2 = O(2")

Answer: True. Need to show that n> = O(2").

n? = O(2") = There exists constants c,ny s.t. n*> < c2" for all n > ny.
2 .

n* < 2" = c>%. Pickc=1 and nyg = 4.

(d) (5pt) A stack follows a FIFO (first-in-first-out) rule.

Answer: False. A stack follows a FILO (first-in-last-out) rule.

(e) (5pt) When we use a max heap to implement a priority queue, the time complexity of
both insert and delete operations are O(n).

Answer: True. The operations insert () and delete() spend O(h), where h =height
of maz heap. Because the maz heap is a complete tree we have h <lgn => The time
complexity of insert () and delete() = O(lgn) = O(n).

(f) (bpt) T(n) =T(n—1)+n, T(1) = 1. Then T'(n) = O(n?).

Answer: True.

T(n) =Tn—-1)+n
Tn—1) =Tn—-2)+n-1
T(2) —T(1) +2
+
T(n) =14+2+..+n=n(n+1)/2=0(n* =0(n?)

(g) (5pt) In a circular doubly linked list with 10 nodes, we will need to change 4 links if
we want to delete a node other than the head node.

Answer: Fulse. We only need to change the next attribute of the node that pre-
cedes the node we want to delete, and the pre attribute of the node that follows the
node we want to delete.

Problem 2 (6pt)

Consider insertion sort and merge sort. For each algorithm, what will be the worst case
asymptotic upper bound on the running time if you know additionally the following about
the input (no explanation is needed, just give the running time):

(a) the input is already sorted?
Answer: Insertion sort O(n), merge sort O(nlgn).

(b) the input is reversely sorted?
Answer: Insertion sort O(n?), merge sort O(nlgn).

(c) the input is a list containing n copies of the same number?
Answer: Insertion sort O(n), merge sort O(nlgn).

Problem 3 (8pt)

Suppose that we have numbers between 1 and 100 in a binary search tree and want to
search for the number 45. Which (possibly multiple) of the following sequences could be the
sequence of nodes examined?

A. 5,2, 1,10, 39, 34, 77, 63.
B.1,2,3,4,5,6,7,8.
C.9,8,63,0,4, 3,2, 1.

D.8,7,6,5,4,3,2 1.
E. 50, 25, 26, 27, 40, 44, 42.
F. 50, 25, 26, 27, 40, 44.

Explain, in one sentence each, why the remaining sequences cannot be the sequence of nodes
examined.

Answer: B, F.

In (A), the left child (2) is checked after root (5). Should have checked right child, which is
> 5.

In (C), the left child (8) is checked after root (9). Should have checked right child, which is
> 9.

In (D), the left child (7) is checked after root (8). Should have checked right child, which is
> 8.

In (E), the left child (42) is checked after (44). Should have checked right child, which is
> 44.

Problem 4 (5pt)

Suppose that we first insert an element z into a binary search tree that does not already
contain x. Suppose that we then immediately delete x from the tree. Will the new tree
be identical to the original one? If yes give the reason in a few sentences. If no, give a
counterexample. Draw pictures if necessary. Can you give the name of a data structure
where this is not the case?

Answer: Yes. When you insert a node into a binary search tree, that node becomes a
leaf. No other operations are applied to the tree. So nothing changes when we delete the
node. Example: Red-black trees

Problem 5 (8pt)

Fill in the table below with the worst-case asymptotic running time of each operation when
using the data structure listed. Assume that L is a list, = is a pointer to an element, and &
is the key of an element.

Answer:

INSERT(Lx) | SEARCH(L k) | DELETE(L,x) | DELETE(L k)
o(1) O(n) O(n) O(n)

Singly-linked

unordered list
Doubly-linked
unordered list

0(1) O(n) 0(1) O(n)

Problem 6 (10pt)

Complete this Python code so that it properly implements insertion sort. Make sure the
result is in-place (do not use another array).

Answer:

def insertionSort(items):
for j in range(l, len(items)):

element = items[j]

i=]

while 0 < i and element < items[i-1]:
items[i] = items[i - 1]
i-=1

items[i] = element

Problem 7 (13pt)

Suppose you have the following hash table, implemented using linear probing. The hash
function we are using is the identity function, h(x) = x mod 9.

01 23 45 67 8
(9[18] J12|3[14]4]21] |

(a) (8pt) In which order could the elements have been added to the hash table? There
are several correct answers, and you should give all of them. Assume that no elements
have been deleted from the table.

A.9, 14,4, 18, 12, 3, 21
B. 12, 3, 14, 18, 4, 9, 21
C. 12, 14, 3,9, 4, 18, 21
D. 9,12, 14, 3, 4, 21, 18
E. 12,9, 18, 3, 14, 21, 4

Explain, in one sentence each, why the remaining sequences cannot be the sequence of
nodes examined.

Answer: C and D. In A, 4 would be inserted at index 4 instead of 6. In B, 18 would
be inserted at index 0 instead of 1. In E, 21 would be inserted at index 6 instead of 7.

(b)

(2pt) Delete the element with key 3 from the hash table, and write down how it looks
afterwards.
Answer:

01 23 4 5 6 7 8
19]18] |12 |DELETED |14 [4][21] |

(3pt) If we want a hash table that stores a set of strings, one possible hash function is
the string length, h(z) = x.length mod m, where m is the size of the hash table. Is
this a good hash function? Explain your answer.

Answer: No. Strings with the same length will have the same hash value. If we
insert lots of strings with the same length, search will take O(n) time instead of O(1).

Problem 8 (15pt)

The Fibonacci numbers are given by the recurrence:

F():O
F1:1
F,=F_1+Fi»

yielding the sequence 0,1,1,2,3,5,8,...

(a)

(10pt) Write an O(n)-time dynamic programming algorithm (in pseudocode) to com-
pute the n’th Fibonacci number.

Answer:

FIBONACCI (n)
let fib[0..n] be a new array
fib[0]=0
fib[1]=1
for i=2 to n
fib[il=fib[i-1]1+fib[i-2]
return fib[n]

f
92020

)

(b) (5pt) Draw the subproblem graph. How many vertices and edges are in the graph?

Answer:

n + 1 vertices.
2 edges leaving vertices from 2, 3,...,n. No edges leaving 0 and 1. = 2n — 2 edges.

