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Question 1 [20 points] Non-parametric density estimation

Consider a sample of iid observation generated by an unknown density function f(x). The
kernel density estimator f̂h(x) of the unknown density f(x) is given by

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(·) is a kernel function.

(a) Discuss which properties the kernel function K(·) needs to satisfy in order to ensure
that the kernel density estimator f̂h(x) is a density function. Justify your answer.

(b) We know that approximate expressions for the Variance and Bias of f̂h(x) are

V ar
(
f̂h(x)

)
≈ 1

nh
‖K‖22f(x), Bias

(
f̂h(x)

)
≈ h2

2
f ′′(x)µ2(K),

where ‖K‖22 =
∫∞
−∞K

2(u)du, µ2(K) =
∫∞
−∞ u

2K(u)du and f ′′(x) = ∂2f(x)
∂x2 . Explain

the trade-off between Variance and Bias in the selection of the bandwidth parameter
h.
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Question 2 [40 points] Univariate non-parametric regression

Consider a univariate regression of Yi on Xi of the form

Yi = m(Xi) + εi, i = 1, . . . , n,

where m(x) is a non-parametric unknown function and εi is an error term such that
E(εi|Xi = x) = 0 and V ar(εi|Xi = x) = σ2.

(a) Show that the Nadaraya-Watson estimator m̂h(x), given by

m̂h(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

s=1K
(
x−Xs

h

) ,
interpolates all data points as h→ 0, i.e. limh→0 m̂h(Xk) = Yk.

(b) Explain why minimizing the Residuals Sum of Squares (RSS)

RSS(h) =
n∑

i=1

(
Yi − m̂h(Xi)

)2
with respect to h is not a viable way to select the optimal bandwidth. Discuss how
the optimal bandwidth h can be selected.

(c) Consider the following R code to derive the leave-one-out cross validation criterion
for the Nadaraya-Watson estimator, which can be obtained using the R function
ksmooth(). Note that, in the code below, the vector x contains the regressor and y

the variable of interest.

+ mcv <- rep(0,n)

+ for(i in 1:n){

+ mcv[i] <- ksmooth(x[-i], y[-i], kernel="normal", bandwidth=h, x.points=x[i])$y

+ }

+ cv <- mean((y-mcv)^2)

Explain what the R code is doing. How would you use the code given above to derive
the optimal bandwidth h? Your answer may contain a pseudo R code to explain the
last part.

(d) Assume now that we are interested in estimating the regression model by regression
splines. Discuss the difference between cubic splines (truncated power basis) and
natural cubic splines.
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Question 3 [20 points] Multivariate non-parametric regression

Consider the following multivariate regression model

Yi = m(X1,i, . . . , Xd,i) + εi, i = 1, . . . , n,

where m(·) is a d-variate unknown non-parametric function.

(a) Write the specification of the multivariate function m(X1,i, . . . , Xd,i) in the additive
model. What is the identification condition of the additive model? Discuss one
advantage and one disadvantage of the additive model.

(b) A colleague of yours claims the following: “The additive model is always better than
the parametric linear regression model because it is more flexible and it can capture
non-linear relationships”. Do you agree with this statement? Explain your reasoning.
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Question 4 [20 points] Shrinkage methods

Consider the following multivariate linear regression model written in vector form

Y = Xβ + ε,

where Y = (Y1, . . . , Yn)>, X is a n × d matrix where each column contains one of the
regressors and ε = (ε1, . . . , εn)>. Assume furthermore that Y and all the regressors are
standardized, i.e. sample mean 0 and sample variance 1.

(a) Assume orthonormal regressors, i.e. X>X = Id. Show that the Ridge estimator β̂Ridge,
given by

β̂Ridge = (X>X + λId)
−1X>Y,

is a biased estimator of the true parameter vector β.

(b) Explain why the Ridge estimator, unlike the OLS estimator, can also be used in
situations where the number of regressors is larger than the number of observations
(d > n).
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