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Question 1 [20 points] Non-parametric density estimation

Consider a sample of iid observation generated by an unknown density function f(x). The
kernel density estimator f̂h(x) of the unknown density f(x) is given by

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(·) is a kernel function.

(a) Discuss which properties the kernel function K(·) needs to satisfy in order to ensure
that the kernel density estimator f̂h(x) is a density function. Justify your answer.

Answer:
The kernel density estimator is a density function if f̂h(x) ≥ 0, for any x ∈ R, and∫ +∞
−∞ f̂h(x)dx = 1. In order to ensure that these properties are satisfied K(x) has to

be a density function itself, that is K(x) ≥ 0, for any x ∈ R, and
∫ +∞
−∞ K(x)du = 1.

Below we formally show that this is the case. First, we note that f̂h(x) ≥ 0 is satisfied
if K(x) ≥ 0 since K

(
x−Xi

h

)
≥ 0 given that K(x) ≥ 0 for any x ∈ R. As concerns∫ +∞

−∞ f̂h(x)dx = 1, we have that∫ +∞

−∞
f̂h(x)dx =

1

nh

n∑
i=1

∫ +∞

−∞
K

(
x−Xi

h

)
dx. (1)

We can solve the integral
∫ +∞
−∞ K

(
x−Xi

h

)
dx by substitution. In particular, we set

u = (x−Xi)/h, which means x = hu+Xi, and obtain∫ +∞

−∞
K

(
x−Xi

h

)
dx =

∫ +∞

−∞
K (u)

∂x

∂u
du

= h

∫ +∞

−∞
K (u) du = h,

where
∫ +∞
−∞ K (u) du = 1 since K (u) is a density function. Therefore, using this result

together with equation (1) we obtain that∫ +∞

−∞
f̂h(x)dx =

1

nh

n∑
i=1

h = 1.

(b) We know that approximate expressions for the Variance and Bias of f̂h(x) are

V ar
(
f̂h(x)

)
≈ 1

nh
‖K‖22f(x), Bias

(
f̂h(x)

)
≈ h2

2
f ′′(x)µ2(K),

where ‖K‖22 =
∫∞
−∞K

2(u)du, µ2(K) =
∫∞
−∞ u

2K(u)du and f ′′(x) = ∂2f(x)
∂x2 . Explain

the trade-off between Variance and Bias in the selection of the bandwidth parameter
h.
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Answer:
The mean squared error MSE of f̂h(x) is

MSE
(
f̂h(x)

)
= V ar

(
f̂h(x)

)
+Bias

(
f̂h(x)

)2
.

For a fixed n, we wish to select h that minimizes the MSE. Here we notice that there is
a trade-off between bias and variance in the selection of h. This trade-off is illustrated
as follows. The expression of the bias shows that, for a fixed n, Bias

(
f̂h(x)

)2
decreases

as h decreases. This makes sense since a small value of h means that only data points
closed to x are used and therefore this will lead to a small bias. However, on the
contrary, we see that V ar

(
f̂h(x)

)
decreases as h increases. This is also intuitive since

the variance will be smaller when h is large since more observations are used and
therefore there will be less sampling uncertainty in the local estimate. This trade-off
leads to a selection of h that compromises between bias and variance.
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Question 2 [40 points] Univariate non-parametric regression

Consider a univariate regression of Yi on Xi of the form

Yi = m(Xi) + εi, i = 1, . . . , n,

where m(x) is a non-parametric unknown function and εi is an error term such that
E(εi|Xi = x) = 0 and V ar(εi|Xi = x) = σ2.

(a) Show that the Nadaraya-Watson estimator m̂h(x), given by

m̂h(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

s=1K
(
x−Xs

h

) ,
interpolates all data points as h→ 0, i.e. limh→0 m̂h(Xk) = Yk.

Answer:
First we note that the limit for h→ 0 of K

(
x−Xi

h

)
is

lim
h→0

K

(
x−Xi

h

)
=

{
0 if x 6= Xi

K(0) if x = Xi.

Therefore, assuming that x = Xk and h→ 0, the Nadaraya-Watson estimator m̂h(Xk)
becomes

lim
h→0

m̂h(Xk) = lim
h→0

∑n
i=1K

(
Xk−Xi

h

)
Yi∑n

i=1K
(
Xk−Xi

h

)
=
K(0)Yk
K(0)

= Yk.

This shows that the Nadaraya-Watson regression curve m̂h(x) interpolates all data
points as h→ 0.

(b) Explain why minimizing the Residuals Sum of Squares (RSS)

RSS(h) =
n∑

i=1

(
Yi − m̂h(Xi)

)2
with respect to h is not a viable way to select the optimal bandwidth. Discuss how
the optimal bandwidth h can be selected.

Answer:
As shown in the previous question, we have that mh(Xi)→ Yi as h → 0. Therefore,
we obtain that RSS(h) → 0 as h → 0. This means that minimizing RSS(h) will
always lead to h = 0 and therefore overfitting. The problem is that in the derivation
of the RSS we are using Yi to predict itself, since Yi is used in the estimation of
m̂h(x). We can solve this problem by leave-one-out cross validation. The idea of
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cross validation is to derive the prediction of Yi by leaving out Yi in the estimation of
m(Xi). In particular, the leave-one-out estimator is

m̂h,−i(Xi) =

∑
j 6=iKh(Xi −Xj)Yj∑
j 6=iKh(Xi −Xj)

,

where ith observation is left out from the summations. Given the leave-one-out esti-
mate, we can obtain the optimal h minimizing the following cross validation criterion

CV (h) =
1

n

n∑
i=1

(
Yi − m̂h,−i(Xi)

)2
.

(c) Consider the following R code to derive the leave-one-out cross validation criterion
for the Nadaraya-Watson estimator, which can be obtained using the R function
ksmooth(). Note that, in the code below, the vector x contains the regressor and y

the variable of interest.

+ mcv <- rep(0,n)

+ for(i in 1:n){

+ mcv[i] <- ksmooth(x[-i], y[-i], kernel="normal", bandwidth=h, x.points=x[i])$y

+ }

+ cv <- mean((y-mcv)^2)

Explain what the R code is doing. How would you use the code given above to derive
the optimal bandwidth h? Your answer may contain a pseudo R code to explain the
last part.

Answer:
The code creates a vector mcv of length n where the leave-one-our cross validation
predictions m̂h,−i(Xi) will be stored. The for loop computes m̂h,−i(Xi) for i = 1, . . . , n
using the R function ksmooth() for a given value of the bandwidth parameter h. In
particular, m̂h,−i(Xi) is computed leaving out the ith observation x[-i] and y[-i]

from the dataset, computing the prediction at x = Xi, x.points=x[i], and consid-
ering a Gaussian kernel. Finally, the last line of code computes the cross-validation
criterion CV (h).
The code given above can be used to create an R function that computes the cross
validation criterion CV (h). This R function can then be minimized with respect to h
to obtain the optimal h. The minimization can be done using a numerical optimizer,
such as optim(), or through a grid search. We write pseudo R code to create the
function

cv_fun <- function(h,x,y){

n <- length(y)

‘‘code given above’’

return(cv)

}

and to optimize it
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h_ini <- 0.2

h_min <- optim(h_ini, function(h) cv_fun(h,x,y), ...)

(d) Assume now that we are interested in estimating the regression model by regression
splines. Discuss the difference between cubic splines (truncated power basis) and
natural cubic splines.

Answer:
A spline function is constructed by splitting the range of values of x using K knots
ξ1, . . . , ξK , which are such that ξ1 < ξ2 < · · · < ξK . A cubic spline (truncated power
basis) is a picewise cubic polynomial that is continuous at each knot. A Similarly, also
a natural cubic spline is a picewise cubic polynomial that is continuous at each knot.
However, natural cubic spline is imposed to be linear beyond the boundary knots ξ1
and ξK . In practice, natural cubic splines can be useful to avoid overfitting near the
boundaries of the sample space where there are fewer data points.
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Question 3 [20 points] Multivariate non-parametric regression

Consider the following multivariate regression model

Yi = m(X1,i, . . . , Xd,i) + εi, i = 1, . . . , n,

where m(·) is a d-variate unknown non-parametric function.

(a) Write the specification of the multivariate function m(X1,i, . . . , Xd,i) in the additive
model. What is the identification condition of the additive model? Discuss one
advantage and one disadvantage of the additive model.

Answer:
The additive model specifies m(·) as

m(X1,i, . . . , Xd,i) = c+
d∑

j=1

mj(Xj,i),

where each mj(·) is a univariate non-parametric unknown function. The identification
condition of the additive model is E

(
mj(X1,i)

)
= 0 for any j = 1, . . . , d. This implies

that c is the unconditional mean of Yi, i.e. E(Yi) = c. One advantage of the additive
model is that it breaks the curse of dimensionality through the additive structure.
In particular, estimates of the additive model have the same rate of convergence as
univariate non-parametric models. One disadvantage of the additive model is that it
imposes no interaction effects between the regressors. This can be a very restrictive
assumption that can lead to misleading results as well as poor predictions.

(b) A colleague of yours claims the following: “The additive model is always better than
the parametric linear regression model because it is more flexible and it can capture
non-linear relationships”. Do you agree with this statement? Explain your reasoning.

Answer:
The additive model is indeed more flexible than the parametric linear regression
model. Therefore, the statement is correct in this respect. However, this does not
imply that it is better. The additive model is a non-parametric method and therefore
estimation accuracy is lower compared to the linear regression model. As a result,
in practice, the parametric linear regression model will be better than the additive
model when the true relationship between the variables is linear (or close to linear).
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Question 4 [20 points] Shrinkage methods

Consider the following multivariate linear regression model written in vector form

Y = Xβ + ε,

where Y = (Y1, . . . , Yn)>, X is a n × d matrix where each column contains one of the
regressors and ε = (ε1, . . . , εn)>. Assume furthermore that Y and all the regressors are
standardized, i.e. sample mean 0 and sample variance 1.

(a) Assume orthonormal regressors, i.e. X>X = Id. Show that the Ridge estimator β̂Ridge,
given by

β̂Ridge = (X>X + λId)
−1X>Y,

is a biased estimator of the true parameter vector β.

Answer:
First, we can rewrite the Ridge estimator β̂Ridge as a function of the OLS estimator

β̂OLS, that is,

β̂Ridge = (X>X + λId)
−1X>Y

= (X>X + λId)
−1(X>X)(X>X)−1X>Y

= (X>X + λId)
−1(X>X)β̂OLS.

Therefore, accounting the assumption that X>X = Id, we obtain

β̂Ridge = (Id + λId)
−1Idβ̂OLS

=
1

1 + λ
β̂OLS.

Since the OLS estimator is unbiased, E(β̂OLS) = β, we obtain that

E(β̂Ridge) =
1

1 + λ
Ê(βOLS) =

1

1 + λ
β.

Therefore the bias is

Bias(β̂Ridge) =
1

1 + λ
β − β = − λ

1 + λ
β.

(b) Explain why the Ridge estimator, unlike the OLS estimator, can also be used in
situations where the number of regressors is larger than the number of observations
(d > n).

Answer:
The OLS estimator, β̂OLS = (X>X)−1X>Y, cannot be used when the number of
regressors is smaller than the sample size. This is the case because X>X is a singular
matrix and therefore the inverse (X>X)−1 is not defined. Instead, in the Ridge
estimator, the inverse (X>X)−1 is replaced by (X>X+λId)

−1. The matrix X>X+λId
is positive definite for any λ > 0 even if X>X is singular. Therefore, the Ridge
estimator can be implemented also when d > n.
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